Scaling-invariant Functions versus Positively Homogeneous Functions
暂无分享,去创建一个
Anne Auger | Nikolaus Hansen | Armand Gissler | Cheikh Tour'e | N. Hansen | A. Auger | Cheikh Tour'e | Armand Gissler
[1] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[2] A. M. Rubinov,et al. Duality for increasing positively homogeneous functions and normal sets , 1998 .
[3] R. Rajendiran,et al. Topological Spaces , 2019, A Physicist's Introduction to Algebraic Structures.
[4] A. Denjoy. Sur les fonctions dérivées sommables , 1915 .
[5] A. Auger,et al. Verifiable conditions for the irreducibility and aperiodicity of Markov chains by analyzing underlying deterministic models , 2015, Bernoulli.
[6] Numérisation de documents anciens mathématiques. Bulletin de la Société Mathématique de France , 1873 .
[7] Olivier Teytaud,et al. Lower Bounds for Comparison Based Evolution Strategies Using VC-dimension and Sign Patterns , 2011, Algorithmica.
[8] Valentin V. Gorokhovik,et al. Saddle representations of positively homogeneous functions by linear functions , 2018, Optim. Lett..
[9] Anne Auger,et al. Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains , 2013, SIAM J. Optim..
[10] J. Dutta,et al. Monotonic Analysis over Cones: I , 2004 .
[11] Rafail N. Gasimov,et al. Strictly Increasing Positively Homogeneous Functions with Application to Exact Penalization , 2003 .
[12] G. Hardy. Weierstrass’s non-differentiable function , 1916 .
[13] Valentin V. Gorokhovik,et al. Positively Homogeneous Functions Revisited , 2016, J. Optim. Theory Appl..
[14] Attila Gilányi,et al. An Introduction to the Theory of Functional Equations and Inequalities , 2008 .
[15] Anne Auger,et al. Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized Search: the (1+1) ES with Generalized One-fifth Success Rule , 2013, ArXiv.
[16] J. B. Lasserre,et al. Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions , 2002 .
[17] J. Aczél,et al. Lectures on Functional Equations and Their Applications , 1968 .
[18] Youhei Akimoto,et al. Generalized drift analysis in continuous domain: linear convergence of (1 + 1)-ES on strongly convex functions with Lipschitz continuous gradients , 2019, FOGA '19.
[19] M. Muresan. A concrete approach to classical analysis , 2009 .