Model calculations of superlubricity of graphite

In this paper, friction between a finite, nanometer-sized, rigid graphite flake and a rigid graphite surface is analyzed theoretically in the framework of a modified Tomlinson model. Lateral forces are studied as a function of orientational misfit between flake and surface lattices, pulling direction of the flake, flake size and flake shape. The calculations show that the orientation dependence of the friction provides information on the contact size and shape. We find good agreement between the calculations and the experimental results, discussed in a recent publication by Dienwiebel et al. [M. Dienwiebel, G. S. Verhoeven, N. Pradeep, J. W. M. Frenken, J. A. Heimberg, and H. W. Zandbergen, Phys. Rev. Lett. 92, 126101(2004)].

[1]  J. Frenken,et al.  Superlubricity of graphite. , 2004, Physical review letters.

[2]  K. Miura,et al.  Observation of the Amontons-Coulomb law on the nanoscale: Frictional forces between MoS2 flakes and MoS2 surfaces , 2002 .

[3]  Crespi,et al.  Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes , 2000, Physical review letters.

[4]  Meyer,et al.  Velocity dependence of atomic friction , 2000, Physical review letters.

[5]  Fasolino,et al.  Onset of sliding friction in incommensurate systems , 2000, Physical review letters.

[6]  Jian Ping Lu,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999 .

[7]  Robbins,et al.  Adsorbed layers and the origin of static friction , 1999, Science.

[8]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[9]  M. Tsukada,et al.  Load dependence of the frictional-force microscopy image pattern of the graphite surface , 1998 .

[10]  Hendrik Hölscher,et al.  CONSEQUENCES OF THE STICK-SLIP MOVEMENT FOR THE SCANNING FORCE MICROSCOPY IMAGING OF GRAPHITE , 1998 .

[11]  T. Gyalog,et al.  Friction between atomically flat surfaces , 1997 .

[12]  Kobayashi,et al.  Atomic-scale friction image of graphite in atomic-force microscopy. , 1996, Physical review. B, Condensed matter.

[13]  C. Lieber,et al.  Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy , 1996, Science.

[14]  Elmer,et al.  Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties. , 1996, Physical review. B, Condensed matter.

[15]  Jacobsen,et al.  Simulations of atomic-scale sliding friction. , 1996, Physical review. B, Condensed matter.

[16]  Seizo Morita,et al.  Spatially quantized friction with a lattice periodicity , 1996 .

[17]  M. Hirano,et al.  Dynamics of friction: superlubric state , 1993 .

[18]  D. Tománek,et al.  Calculation of an Atomically Modulated Friction Force in Atomic-Force Microscopy , 1991 .

[19]  Sokoloff Theory of energy dissipation in sliding crystal surfaces. , 1990, Physical review. B, Condensed matter.

[20]  Hirano,et al.  Atomistic locking and friction. , 1990, Physical review. B, Condensed matter.

[21]  William A. Steele,et al.  The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms☆ , 1973 .

[22]  G. A. Tomlinson B.Sc.,et al.  CVI. A molecular theory of friction , 1929 .