PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space.

[1]  A. Holland,et al.  Binding of STIL to Plk4 activates kinase activity to promote centriole assembly , 2015, The Journal of cell biology.

[2]  Ashley V. Kroll,et al.  Reversible centriole depletion with an inhibitor of Polo-like kinase 4 , 2015, Science.

[3]  G. C. Rogers,et al.  Jcb: Article , 2022 .

[4]  G. C. Rogers,et al.  Autoinhibition and relief mechanism for Polo-like kinase 4 , 2015, Proceedings of the National Academy of Sciences.

[5]  M. Oyama,et al.  Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole , 2014, Nature Communications.

[6]  D. Cescon,et al.  Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. , 2014, Cancer cell.

[7]  Sihem Zitouni,et al.  Polo-like kinases: structural variations lead to multiple functions , 2014, Nature Reviews Molecular Cell Biology.

[8]  Qingwen Xu,et al.  PIPKI&ggr; targets to the centrosome and restrains centriole duplication , 2014, Journal of Cell Science.

[9]  P. Gönczy,et al.  Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells , 2014, The Journal of cell biology.

[10]  P. Duarte,et al.  Regulation of Autophosphorylation Controls PLK4 Self-Destruction and Centriole Number , 2013, Current Biology.

[11]  G. C. Rogers,et al.  Polo-like Kinase 4 Autodestructs by Generating Its Slimb-Binding Phosphodegron , 2013, Current Biology.

[12]  S. Knapp,et al.  Mechanism and consequence of the autoactivation p38α Mitogen-activated Protein Kinase promoted by TAB1 , 2013, Nature Structural &Molecular Biology.

[13]  R. Bayliss,et al.  A Kinetic Test Characterizes Kinase Intramolecular and Intermolecular Autophosphorylation Mechanisms , 2013, Science Signaling.

[14]  P. Gönczy,et al.  Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. , 2013, Developmental cell.

[15]  P. Paul-Gilloteaux,et al.  Centrosome amplification causes microcephaly , 2013, Nature Cell Biology.

[16]  H. Saito,et al.  SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress , 2013, Nature Communications.

[17]  V. Colot,et al.  Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants , 2013, Nature Communications.

[18]  G. Chiosis,et al.  A global view of Hsp90 functions , 2013, Nature Structural &Molecular Biology.

[19]  Heinrich Leonhardt,et al.  3D-structured illumination microscopy provides novel insight into architecture of human centrosomes , 2012, Biology Open.

[20]  S. Knapp,et al.  Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria , 2012, Protein expression and purification.

[21]  G. C. Rogers,et al.  The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification , 2011, The Journal of cell biology.

[22]  Erich A. Nigg,et al.  The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries , 2011, Nature Cell Biology.

[23]  E. Myers,et al.  Limiting Amounts of Centrosome Material Set Centrosome Size in C. elegans Embryos , 2011, Current Biology.

[24]  J. Pereira-Leal,et al.  Tracing the origins of centrioles, cilia, and flagella , 2011, The Journal of cell biology.

[25]  K. Uryu,et al.  The conversion of centrioles to centrosomes: essential coupling of duplication with segregation , 2011, The Journal of cell biology.

[26]  T. Stearns,et al.  Cep152 interacts with Plk4 and is required for centriole duplication , 2010, The Journal of cell biology.

[27]  I. Hoffmann,et al.  Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome , 2010, The Journal of cell biology.

[28]  D. Glover,et al.  Asterless is a scaffold for the onset of centriole assembly , 2010, Nature.

[29]  Filipe Tavares-Cadete,et al.  Stepwise evolution of the centriole-assembly pathway , 2010, Journal of Cell Science.

[30]  Bruce Bowerman,et al.  Symmetry breaking in biology. , 2010, Cold Spring Harbor perspectives in biology.

[31]  M. Bornens,et al.  Autophosphorylation of Polo-like Kinase 4 and Its Role in Centriole Duplication , 2010, Molecular biology of the cell.

[32]  Sherry L. Niessen,et al.  Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability , 2010, The Journal of cell biology.

[33]  Mónica Bettencourt-Dias,et al.  From Zero to Many: Control of Centriole Number in Development and Disease , 2009, Traffic.

[34]  Buzz Baum,et al.  A Genome-Wide RNAi Screen to Dissect Centriole Duplication and Centrosome Maturation in Drosophila , 2008, PLoS biology.

[35]  J. Yates,et al.  Chromosomal Instability by Inefficient Mps1 Auto-Activation Due to a Weakened Mitotic Checkpoint and Lagging Chromosomes , 2008, PloS one.

[36]  D. Glover,et al.  From centriole biogenesis to cellular function: Centrioles are essential for cell division at critical developmental stages , 2008, Cell cycle.

[37]  Yingming Zhao,et al.  Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint , 2007, Proceedings of the National Academy of Sciences.

[38]  K. Resing,et al.  Mps1 Activation Loop Autophosphorylation Enhances Kinase Activity* , 2007, Journal of Biological Chemistry.

[39]  E. Nigg,et al.  Plk4-induced centriole biogenesis in human cells. , 2007, Developmental cell.

[40]  David M. Glover,et al.  Centrosome biogenesis and function: centrosomics brings new understanding , 2007, Nature Reviews Molecular Cell Biology.

[41]  M Bettencourt-Dias,et al.  Revisiting the Role of the Mother Centriole in Centriole Biogenesis , 2007, Science.

[42]  J. Raff,et al.  Overexpressing Centriole-Replication Proteins In Vivo Induces Centriole Overduplication and De Novo Formation , 2007, Current Biology.

[43]  R. Wollman,et al.  Genes Required for Mitotic Spindle Assembly in Drosophila S2 Cells , 2007, Science.

[44]  J. Loncarek,et al.  Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells , 2007, The Journal of cell biology.

[45]  L. Lehmann,et al.  SAK/PLK4 Is Required for Centriole Duplication and Flagella Development , 2005, Current Biology.

[46]  Christopher J. Wilkinson,et al.  The Polo kinase Plk4 functions in centriole duplication , 2005, Nature Cell Biology.

[47]  Andrea Musacchio,et al.  Architecture of the Human Ndc80-Hec1 Complex, a Critical Constituent of the Outer Kinetochore* , 2005, Journal of Biological Chemistry.

[48]  B. McEwen,et al.  The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. , 2005, The Journal of cell biology.

[49]  D. M. Glover,et al.  Genome-wide survey of protein kinases required for cell cycle progression , 2004, Nature.

[50]  Dahua Chen,et al.  A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell , 2003, Development.

[51]  J. Adams Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model? , 2003, Biochemistry.

[52]  M. Gorovsky,et al.  Tetrahymena thermophila contains a conventional γ-tubulin that is differentially required for the maintenance of different microtubule-organizing centers , 2002, The Journal of cell biology.

[53]  W. Marshall,et al.  Kinetics and regulation of de novo centriole assembly Implications for the mechanism of centriole duplication , 2001, Current Biology.

[54]  J. Dennis,et al.  Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation , 1996, Molecular and cellular biology.

[55]  S. Bonaccorsi,et al.  Chromatin and microtubule organization during premeiotic, meiotic and early postmeiotic stages of Drosophila melanogaster spermatogenesis. , 1994, Journal of cell science.

[56]  S Subramani,et al.  A conserved tripeptide sorts proteins to peroxisomes , 1989, The Journal of cell biology.