Energy absorption behaviors of pre-folded composite tubes with the full-diamond origami patterns

[1]  Z. You,et al.  Origami concave tubes for energy absorption , 2019, International Journal of Solids and Structures.

[2]  Mirko Kovac,et al.  Rotorigami: A rotary origami protective system for robotic rotorcraft , 2018, Science Robotics.

[3]  Z. You,et al.  Rectangular sandwich plates with Miura-ori folded core under quasi-static loadings , 2018, Composite Structures.

[4]  Qing Li,et al.  Experimental investigation of the quasi-static axial crushing behavior of filament-wound CFRP and aluminum/CFRP hybrid tubes , 2018, Composite Structures.

[5]  Aiguo Cheng,et al.  Modeling for CFRP structures subjected to quasi-static crushing , 2018 .

[6]  Bo Wang,et al.  Crashworthiness design for trapezoid origami crash boxes , 2017 .

[7]  Dayong Hu,et al.  Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions , 2016 .

[8]  Z. You,et al.  Geometrically Graded Origami Tubes , 2016 .

[9]  Yi Min Xie,et al.  Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification , 2016 .

[10]  E. Mahdi,et al.  The effect of fiber orientation on the energy absorption capability of axially crushed composite tubes , 2014 .

[11]  A. Hamouda,et al.  Axial crushing behavior and energy absorption efficiency of corrugated tubes , 2014 .

[12]  Jiayao Ma,et al.  Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation , 2014 .

[13]  Yan Chen,et al.  Axial crushing of thin-walled structures with origami patterns , 2012 .

[14]  Brian Falzon,et al.  Numerical analysis of intralaminar failure mechanisms in composite structures, Part II: Applications , 2011 .

[15]  Ichiro Hagiwara,et al.  Shape Optimization to Improve Energy Absorption Ability of Cylindrical Thin-Walled Origami Structure , 2011 .

[16]  Ireneusz Lapczyk,et al.  Progressive damage modeling in fiber-reinforced materials , 2007 .

[17]  Dimitrios E. Manolakos,et al.  On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental , 2005 .

[18]  Tongxi Yu,et al.  Energy Absorption of Structures and Materials , 2003 .

[19]  Seyed Jamal Hosseinipour,et al.  Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression , 2002 .

[20]  Abdulmalik A. Alghamdi,et al.  Modes of axial collapse of unconstrained capped frusta , 2002 .

[21]  Jae-Eung Oh,et al.  EFFECT OF TRIGGERING ON THE ENERGY ABSORPTION CAPACITY OF AXIALLY COMPRESSED ALUMINUM TUBES , 1999 .

[22]  Dimitrios E. Manolakos,et al.  Energy absorption capability of fibreglass composite square frusta subjected to static and dynamic axial collapse , 1996 .

[23]  Dimitrios E. Manolakos,et al.  Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes , 1996 .

[24]  G. L. Farley,et al.  Crushing Characteristics of Continuous Fiber-Reinforced Composite Tubes , 1992 .

[25]  S. Reid,et al.  Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section , 1986 .

[26]  W. Abramowicz,et al.  Dynamic axial crushing of square tubes , 1984 .

[27]  G. L. Viegelahn,et al.  The crumpling of steel thin-walled tubes and frusta under axial compression at elevated strain-rates: Some experimental results , 1984 .

[28]  T. Wierzbicki,et al.  On the Crushing Mechanics of Thin-Walled Structures , 1983 .

[29]  W. Abramowicz The effective crushing distance in axially compressed thin-walled metal columns , 1983 .

[30]  J. M. Alexander AN APPROXIMATE ANALYSIS OF THE COLLAPSE OF THIN CYLINDRICAL SHELLS UNDER AXIAL LOADING , 1960 .