Order and disorder in the magnetization of the chiral crystal CrNb3S6

Nanoscale spin solitons in CrNb${}_{3}$S${}_{6}$ are notable for their macroscale coherence, creating an ordered chiral soliton lattice (CSL) that may be tuned by the application of a magnetic field. Through studying experimentally the transitions between the CSL and field-polarized phases, this work shows the existence of a hysteretic disordered phase and reveals the importance of CSL dislocations in mediating the transitions. Gaining control and understanding of dislocations may lead to configurable nanochannels of field-polarized spins, suitable for the propagation of spin waves.

[1]  I. G. Bostrem,et al.  Tailored resonance in micrometer-sized monoaxial chiral helimagnets , 2018, Physical Review B.

[2]  Y. Togawa,et al.  Intrinsic hysteresis due to the surface barrier for chiral solitons in monoaxial chiral helimagnets , 2018, Physical Review B.

[3]  J. Akimitsu,et al.  Geometrical protection of topological magnetic solitons in microprocessed chiral magnets , 2018 .

[4]  A. Fert,et al.  Advances in the Physics of Magnetic Skyrmions and Perspective for Technology , 2017, 1712.07236.

[5]  J. Akimitsu,et al.  Magnetic solitons and magnetic phase diagram of the hexagonal chiral crystal CrNb 3 S 6 in oblique magnetic fields , 2017 .

[6]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[7]  I. G. Bostrem,et al.  Collective resonant dynamics of the chiral spin soliton lattice in a monoaxial chiral magnetic crystal , 2017 .

[8]  M. Farle,et al.  Magnetic Skyrmion Formation at Lattice Defects and Grain Boundaries Studied by Quantitative Off-Axis Electron Holography. , 2017, Nano letters.

[9]  Inoue Katsuya,et al.  Symmetry, Structure, and Dynamics of Monoaxial Chiral Magnets , 2016 .

[10]  Joshua A. Taillon,et al.  hyperspy/hyperspy v1.4.1 , 2016 .

[11]  Kato Yusuke,et al.  Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets , 2016 .

[12]  J. Campo,et al.  Understanding the H -T phase diagram of the monoaxial helimagnet , 2016, 1603.06362.

[13]  I. G. Bostrem,et al.  Resonant collective dynamics of the weakly pinned soliton lattice in a monoaxial chiral helimagnet , 2016 .

[14]  Y. Tokura,et al.  Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe , 2015, Nature Communications.

[15]  I. G. Bostrem,et al.  Magnetic soliton confinement and discretization effects arising from macroscopic coherence in a chiral spin soliton lattice , 2015 .

[16]  Y. Fujiyoshi Development of the field of structural physiology , 2015, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[17]  D. Maclaren,et al.  Aberration corrected Lorentz scanning transmission electron microscopy. , 2015, Ultramicroscopy.

[18]  A. S. Ovchinnikov,et al.  Interlayer magnetoresistance due to chiral soliton lattice formation in hexagonal chiral magnet CrNb3S6. , 2013, Physical review letters.

[19]  I. Dzyaloshinskiǐ THEORY OF HELICOIDAL STRUCTURES IN ANTIFERROMAGNETS. I. NONMETALS , 2013 .

[20]  A. S. Ovchinnikov,et al.  Chiral magnetic soliton lattice on a chiral helimagnet. , 2012, Physical review letters.

[21]  Y. Fujiyoshi Structural physiology based on electron crystallography , 2011, Protein science : a publication of the Protein Society.

[22]  J. Kishine,et al.  Theory of spin resonance in a chiral helimagnet , 2009, 0903.3699.

[23]  Y. Yoshida,et al.  Synthesis, Structure and Magnetic Properties of Chiral Molecule-Based Magnets , 2005 .

[24]  M. R. Freeman,et al.  Quantitative study of magnetic field distribution by electron holography and micromagnetic simulations , 2003 .

[25]  Stephen McVitie,et al.  Quantitative imaging of magnetic domain walls in thin films using Lorentz and magnetic force microscopies , 2001 .

[26]  J. Chapman,et al.  Transmission electron microscopies of magnetic microstructures , 1999 .

[27]  J. Chapman,et al.  Modified differential phase contrast Lorentz Microscopy for improved imaging of magnetic structures , 1990, International Conference on Magnetics.

[28]  R. Egerton,et al.  EELS log-ratio technique for specimen-thickness measurement in the TEM. , 1988, Journal of electron microscopy technique.

[29]  K. Kikuchi,et al.  Magnetic Properties of Cr 1/3 NbS 2 , 1983 .

[30]  T. Moriya,et al.  Evidence for the helical spin structure due to antisymmetric exchange interaction in Cr13NbS2 , 1982 .

[31]  V. V. Tarasenko,et al.  Effect of Dislocations on the Line Width of Uniform Ferro-and Antiferromagnetic Resonances , 1968 .

[32]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[33]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[34]  C. Kittel On the Theory of Ferromagnetic Resonance Absorption , 1948 .