Nonlinear analysis of dynamic signature

[1]  Réjean Plamondon,et al.  Development of a Sigma-Lognormal representation for on-line signatures , 2009, Pattern Recognit..

[2]  H. Möller,et al.  Kinematic Analysis of Handwriting Movements in Patients with Alzheimer’s Disease, Mild Cognitive Impairment, Depression and Healthy Subjects , 2003, Dementia and Geriatric Cognitive Disorders.

[3]  Mitchell G Longstaff,et al.  A nonlinear analysis of the temporal characteristics of handwriting , 1999 .

[4]  Roy Huber,et al.  Handwriting Identification: Facts and Fundamentals , 1999 .

[5]  N. Hogan,et al.  Quantization of continuous arm movements in humans with brain injury. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. G. Feldman,et al.  The origin and use of positional frames of reference in motor control , 1995, Behavioral and Brain Sciences.

[7]  Réjean Plamondon,et al.  Automatic Signature Verification: The State of the Art - 1989-1993 , 1994, Int. J. Pattern Recognit. Artif. Intell..

[8]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[9]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[10]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[11]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[12]  G. Stelmach,et al.  Control of stroke size, peak acceleration, and stroke duration in Parkinsonian handwriting , 1991 .

[13]  C. Essex,et al.  Correlation dimension and systematic geometric effects. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[14]  Réjean Plamondon,et al.  An evaluation of motor models of handwriting , 1989, IEEE Trans. Syst. Man Cybern..

[15]  B. Kay The dimensionality of movement trajectories and the degrees of freedom problem: A tutorial , 1988 .

[16]  J. Elsner,et al.  The weather attractor over very short timescales , 1988, Nature.

[17]  T. Higuchi Approach to an irregular time series on the basis of the fractal theory , 1988 .

[18]  L. Stark,et al.  An intrinsic mechanism for the oscillatory contraction of muscle , 1986, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[19]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[20]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[21]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[22]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[23]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[24]  William Anthony Sparrow,et al.  Energetics of human activity , 2000 .

[25]  D. Glencross,et al.  Motor control and sensory motor integration : issues and directions , 1995 .

[26]  Peter D. Neilson,et al.  Chapter 5 Adaptive optimal control of human tracking , 1995 .

[27]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[28]  F. J. Maarse The study of handwriting movement: peripheral models and signal processing techniques , 1987 .

[29]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .