Spatiotemporal Access Methods

Spatiotemporal Database Management Systems (STDBMSs) manage data whose geometry changes over time. There are many applications that create such data, including global change (as in climate or land cover changes), transportation (traffic surveillance data, intelligent transportation systems), social (demographic, health, etc.), and multimedia (animated movies) applications. For simplicity we consider two spatial attributes, the object position and extent, either (or both) of which can change with time. Based on the rate that spatial attributes change, we identify two cases: the discrete and the continuous spatiotemporal environments. We first introduce the basic characteristics and interesting queries for each environment and then present efficient spatiotemporal indexing techniques.

[1]  Christian S. Jensen,et al.  Temporal Data Management , 1999, IEEE Trans. Knowl. Data Eng..

[2]  Yannis Manolopoulos,et al.  Processing of Spatio-Temporal Queries in Image Databases , 1999, ADBIS.

[3]  Bernard Chazelle,et al.  Lower Bounds on the Complexity of Simplex Range Reporting on a Pointer Machine , 1992, ICALP.

[4]  Christian S. Jensen,et al.  Indexing the Positions of Continuously Moving Objects , 2000, SIGMOD Conference.

[5]  Yannis Theodoridis,et al.  Evaluation of Access Structures for Discretely Moving Points , 1999, Spatio-Temporal Database Management.

[6]  Timos K. Sellis,et al.  Spatio-temporal composition and indexing for large multimedia applications , 1998, Multimedia Systems.

[7]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[8]  James D. Carswell Digital Image Retrieval using Shape-based Queries , 1998 .

[9]  Yufei Tao,et al.  Efficient historical R-trees , 2001, Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001.

[10]  Jan Chomicki,et al.  Constraint-based Interoperability of Spatiotemporal Databases* , 1999, GeoInformatica.

[11]  Mengchu Cai,et al.  Parametric R-Tree: An Index Structure for Moving Objects , 2000 .

[12]  Dimitrios Gunopulos,et al.  Indexing Animated Objects Using Spatiotemporal Access Methods , 2001, IEEE Trans. Knowl. Data Eng..

[13]  F. Warren Burton,et al.  Implementation of Overlapping B-Trees for Time and Space Efficient Representation of Collections of Similar Files , 1990, Comput. J..

[14]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[15]  Yufei Tao,et al.  MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries , 2001, VLDB.

[16]  Timos K. Sellis,et al.  Specifications for efficient indexing in spatiotemporal databases , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[17]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[18]  Christos Faloutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[19]  Alok Sinha Client-server computing , 1992, CACM.

[20]  Alberto O. Mendelzon,et al.  Similarity-based queries for time series data , 1997, SIGMOD '97.

[21]  Max J. Egenhofer,et al.  What's special about spatial?: database requirements for vehicle navigation in geographic space , 1993, SIGMOD Conference.

[22]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[23]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[24]  Oliver Günther,et al.  The design of the cell tree: an object-oriented index structure for geometric databases , 1989, [1989] Proceedings. Fifth International Conference on Data Engineering.

[25]  Vassilis J. Tsotras,et al.  Comparison of access methods for time-evolving data , 1999, CSUR.

[26]  Dimitrios Gunopulos,et al.  Nearest Neighbor Queries in a Mobile Environment , 1999, Spatio-Temporal Database Management.

[27]  Tomasz Imielinski,et al.  Querying in Highly Mobile Distributed Environments , 1992, VLDB.

[28]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[29]  David B. Lomet,et al.  Access methods for multiversion data , 1989, SIGMOD '89.

[30]  Walid G. Aref,et al.  Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Objects , 2002, IEEE Trans. Computers.

[31]  Divyakant Agrawal,et al.  Storage and Retrieval of Moving Objects , 2001, Mobile Data Management.

[32]  Laks V. S. Lakshmanan,et al.  ProbView: a flexible probabilistic database system , 1997, TODS.

[33]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[34]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[35]  Yannis Manolopoulos,et al.  Overlapping linear quadtrees: a spatio-temporal access method , 1998, GIS '98.

[36]  Sridhar Ramaswamy,et al.  Indexing for Data Models with Constraints and Classes , 1996, J. Comput. Syst. Sci..

[37]  Sharad Mehrotra,et al.  Querying Mobile Objects in Spatio-Temporal Databases , 2001, SSTD.

[38]  H. V. Jagadish,et al.  On Indexing Line Segments , 1990, VLDB.

[39]  Leandros Tassiulas,et al.  Broadcast scheduling for information distribution , 1999, Wirel. Networks.

[40]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[41]  Peter Widmayer,et al.  The LSD tree: spatial access to multidimensional and non-point objects , 1989, VLDB 1989.

[42]  Robert E. Tarjan,et al.  Making data structures persistent , 1986, STOC '86.

[43]  Olivier Devillers,et al.  Revenge of the Dog: Queries on Voronoi Diagrams of Moving Points , 1994, CCCG.

[44]  Bernhard Seeger,et al.  An asymptotically optimal multiversion B-tree , 1996, The VLDB Journal.

[45]  Özgür Ulusoy,et al.  A Quadtree-Based Dynamic Attribute Indexing Method , 1998, Comput. J..

[46]  Bernd-Uwe Pagel,et al.  Towards an analysis of range query performance in spatial data structures , 1993, PODS '93.

[47]  Christos Faloutsos,et al.  On packing R-trees , 1993, CIKM '93.

[48]  Eric Mays,et al.  Fully persistent B+-trees , 1991, SIGMOD '91.

[49]  Christos H. Papadimitriou,et al.  On the analysis of indexing schemes , 1997, PODS '97.

[50]  Elisa Bertino,et al.  Towards Optimal Two-Dimensional Indexing for Constraint Databases , 1997, Inf. Process. Lett..

[51]  Jeffrey F. Naughton,et al.  Generalized Search Trees for Database Systems , 1995, VLDB.

[52]  Kyuseok Shim,et al.  Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases , 1995, VLDB.

[53]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[54]  Leonidas J. Guibas,et al.  Data Structures for Mobile Data , 1997, J. Algorithms.

[55]  Jeffrey Scott Vitter,et al.  Optimal dynamic interval management in external memory , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[56]  Christos Faloutsos,et al.  Designing Access Methods for Bitemporal Databases , 1998, IEEE Trans. Knowl. Data Eng..

[57]  Richard R. Muntz,et al.  Generalized data stream indexing and temporal query processing , 1992, [1992 Proceedings] Second International Workshop on Research Issues on Data Engineering: Transaction and Query Processing.

[58]  Georgios Evangelidis,et al.  The hBP-tree: A Modified hB-tree Supporting Concurrency, Recovery and Node Consolidation , 1995, VLDB.

[59]  Haihong Li,et al.  Algorithms for Automated Extractioin of Man-Made Objects from Raster Image Data in GIS , 1994, IGIS.

[60]  Jeffrey Scott Vitter,et al.  Efficient searching with linear constraints , 1998, J. Comput. Syst. Sci..

[61]  Nick Roussopoulos,et al.  Hashing Moving Objects , 2001, Mobile Data Management.

[62]  Jonathan Goldstein,et al.  Processing queries by linear constraints , 1997, PODS '97.

[63]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[64]  Mario A. Nascimento,et al.  Towards historical R-trees , 1998, SAC '98.

[65]  Vassilis J. Tsotras,et al.  Efficient Management of Time-Evolving Databases , 1995, IEEE Trans. Knowl. Data Eng..

[66]  Sridhar Ramaswamy Efficient Indexing for Constraint and Temporal Databases , 1997, ICDT.

[67]  Dimitrios Gunopulos,et al.  Finding Similar Time Series , 1997, PKDD.

[68]  Jan Chomicki,et al.  A geometric framework for specifying spatiotemporal objects , 1999, Proceedings. Sixth International Workshop on Temporal Representation and Reasoning. TIME-99.

[69]  Sridhar Ramaswamy,et al.  The P-range tree: a new data structure for range searching in secondary memory , 1995, SODA '95.

[70]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[71]  Arie Segev,et al.  A consensus glossary of temporal database concepts , 1994, SIGMOD 1994.

[72]  Michael F. Worboys,et al.  A Unified Model for Spatial and Temporal Information , 1994, Comput. J..

[73]  Hanan Samet,et al.  A consistent hierarchical representation for vector data , 1986, SIGGRAPH.

[74]  Ralf Hartmut Güting,et al.  Abstract and discrete modeling of spatio-temporal data types , 1998, GIS '98.

[75]  Dimitrios Gunopulos,et al.  Indexing Animated Objects , 1999, Multimedia Information Systems.

[76]  Ramez Elmasri,et al.  The Time Index: An Access Structure for Temporal Data , 1990, VLDB.

[77]  Christian S. Jensen,et al.  On the semantics of “now” in databases , 1996, TODS.

[78]  Jirí Matousek,et al.  Geometric range searching , 1994, CSUR.

[79]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[80]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[81]  Michael Stonebraker,et al.  The Sequoia 2000 Benchmark , 1993, SIGMOD Conference.

[82]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[83]  Ouri Wolfson,et al.  Cost and imprecision in modeling the position of moving objects , 1998, Proceedings 14th International Conference on Data Engineering.