Signal compression with smooth local trigonometric bases

We discuss smooth local trigonometric bases and their applications to signal compression. In image compression, these bases can reduce the blocking effect that occurs in the Joint Photographic Experts Group (JPEG). We present and compare two generalizations of the original construction of Malvar, Coifman, and Meyer: biorthogonal and equal parity bases. These have the advantage that constant and linear components, respectively, can be represented efficiently. We show how they reduce blocking effects and improve the SNR.

[1]  Y Sheng,et al.  Wavelet transform as a bank of the matched filters. , 1992, Applied optics.

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  Yves Meyer,et al.  Size properties of wavelet packets , 1992 .

[4]  Harold H. Szu,et al.  Neural network adaptive wavelets for signal representation and classification , 1992 .

[5]  Y. Meyer,et al.  Remarques sur l'analyse de Fourier à fenêtre , 1991 .

[6]  G. Weiss,et al.  Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets , 1993 .

[7]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[8]  George W. Stroke,et al.  Optical computing , 1972, IEEE Spectrum.

[9]  Y. Meyer Opérateurs de Calderón-Zygmund , 1990 .

[10]  T Lu,et al.  Optical wavelet matched filters for shift-invariant pattern recognition. , 1993, Optics letters.

[11]  Henrique S. Malvar Lapped transforms for efficient transform/subband coding , 1990, IEEE Trans. Acoust. Speech Signal Process..

[12]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[13]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[14]  X. Fang,et al.  Adapted Multiple Folding Local Trigonometric Transforms and Wavelet Packets , 1994 .

[15]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[16]  Henrique S. Malvar,et al.  The LOT: transform coding without blocking effects , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  I. Daubechies,et al.  A simple Wilson orthonormal basis with exponential decay , 1991 .

[18]  William H. Press,et al.  Numerical recipes , 1990 .

[19]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[20]  M. Partridge Editor , 1960 .

[21]  Björn Jawerth,et al.  Biorthogonal Smooth Local Trigonometric Bases , 1995 .

[22]  Szu,et al.  Neural network and wavelet transform for scale-invariant data classification. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  J. E. Midwinter Optical Computer Architectures , 1991 .