The kinetics of protoporphyrin fluorescence during ALA-PDT in human malignant skin tumors.

Fluorescence monitoring during photodynamic therapy (PDT) with the use of topical 5-aminolevulinic acid (ALA) was carried out in patients bearing superficial and nodular basal cell carcinomas (BCC), squamous cell carcinomas (SCC) and Kaposi's sarcomas. A new diagnostic-therapeutic system based on an incoherent CW light source was used for fluorescence spectral measurements and imaging. The results showed that photoirradiation reduced ALA-induced protoporphyrin IX (PP) fluorescence in all tumors. The rate of PP photobleaching in superficial BCC and SCC tumors was significantly higher than in large nodular BCC tumors. The results showed that the differences in kinetics of fluorescence reduction could be attributed to the tumor thickness. One hour after photoirradiation with a light dose of 170 J/cm2 a phenomenon of re-appearance and recovery of PP fluorescence was observed in the large deeply penetrating BCC tumors and Kaposi's sarcoma lesions. In such cases an additional light treatment was performed. The results of the study demonstrated that fluorescence monitoring is very appropriate for the definition of an optimal ALA-PDT clinical protocol.

[1]  J Moan,et al.  Effect of bleaching of porphyrin sensitizers during photodynamic therapy. , 1986, Cancer letters.

[2]  J C Kennedy,et al.  Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. , 1992, Journal of photochemistry and photobiology. B, Biology.

[3]  J Moan,et al.  Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5‐aminolevulinic acid in mice bearing mammary carcinoma , 1992, International journal of cancer.

[4]  Z. Malik,et al.  5-Aminolevulinic acid stimulation of porphyrin and hemoglobin synthesis by uninduced Friend erythroleukemic cells. , 1979, Cell differentiation.

[5]  Z. Malik,et al.  Destruction of erythroleukemia, myelocytic leukemia and burkitt lymphoma cells by photoactivated protoporphyrin , 1980, International journal of cancer.

[6]  K Svanberg,et al.  Photodynamic therapy of non‐melanoma malignant tumours of the skin using topical δ‐amino levulinic acid sensitization and laser irradiation , 1994, The British journal of dermatology.

[7]  D. Phillips,et al.  Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. , 1992, British Journal of Cancer.

[8]  J Moan,et al.  PHOTOBLEACHING OF PORPHYRINS USED IN PHOTODYNAMIC THERAPY AND IMPLICATIONS FOR THERAPY , 1987, Photochemistry and photobiology.

[9]  M Landthaler,et al.  PENETRATION POTENCY OF TOPICAL APPLIED δ‐AMINOLEVULINIC ACID FOR PHOTODYNAMIC THERAPY OF BASAL CELL CARCINOMA * , 1994, Photochemistry and photobiology.

[10]  J. Spikes QUANTUM YIELDS AND KINETICS OF THE PHOTOBLEACHING OF HEMATOPORPHYRIN, PHOTOFRIN II, TETRA(4‐SULFONATOPHENYL)‐PORPHINE AND UROPORPHYRIN , 1984 .

[11]  D. V. Ash,et al.  Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. , 1994, British Journal of Cancer.

[12]  T J Dougherty,et al.  PHOTOSENSITIZERS: THERAPY AND DETECTION OF MALIGNANT TUMORS , 1987, Photochemistry and photobiology.

[13]  Z. Malik,et al.  Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice. , 1995, Journal of photochemistry and photobiology. B, Biology.

[14]  K König,et al.  In vivo photoproduct formation during PDT with ALA-induced endogenous porphyrins. , 1993, Journal of photochemistry and photobiology. B, Biology.

[15]  A. Batlle,et al.  Porphyrins, porphyrias, cancer and photodynamic therapy--a model for carcinogenesis. , 1993, Journal of photochemistry and photobiology. B, Biology.

[16]  Angelika C. Rueck,et al.  Photodynamic tumor therapy and on-line fluorescence spectroscopy after ALA administration using 633-nm light as therapeutic and fluorescence excitation radiation , 1994 .