On the relationship between the traceability properties of Reed-Solomon codes

Fingerprinting codes are used to prevent dishonest users (traitors) from redistributing digital contents. In this context, codes with the traceability (TA) property and codes with the identifiable parent property (IPP) allow the unambiguous identification of traitors. The existence conditions for IPP codes are less strict than those for TA codes. In contrast, IPP codes do not have an efficient decoding algorithm in the general case. Other codes that have been widely studied but possess weaker identification capabilities are separating codes. It is a well-known result that a TA code is an IPP code, and an IPP code is a separating code. The converse is in general false. However, it has been conjectured that for Reed-Solomon codes all three properties are equivalent. In this paper we investigate this equivalence, providing a positive answer when the number of traitors divides the size of the ground field.

[1]  Gérard D. Cohen,et al.  Upper bounds on separating codes , 2004, IEEE Transactions on Information Theory.

[2]  Alexander Barg,et al.  Digital fingerprinting codes: problem statements, constructions, identification of traitors , 2003, IEEE Trans. Inf. Theory.

[3]  Béla Bollobás,et al.  On separating systems , 2007, Eur. J. Comb..

[4]  Jessica Staddon,et al.  Efficient Traitor Tracing Algorithms Using List Decoding , 2001, ASIACRYPT.

[5]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[6]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Douglas R. Stinson,et al.  Secure frameproof codes, key distribution patterns, group testing algorithms and related structures , 2000 .

[9]  Arthur D. Friedman,et al.  Universal Single Transition Time Asynchronous State Assignments , 1969, IEEE Transactions on Computers.

[10]  Frank Ruskey,et al.  Completely separating systems of k-sets , 1998, Discret. Math..

[11]  Hongxia Jin,et al.  Combinatorial Properties for Traceability Codes Using Error Correcting Codes , 2007, IEEE Transactions on Information Theory.

[12]  Amos Fiat,et al.  Tracing traitors , 2000, IEEE Trans. Inf. Theory.

[13]  Jessica Staddon,et al.  Applications of list decoding to tracing traitors , 2003, IEEE Trans. Inf. Theory.

[14]  Miguel Soriano,et al.  A note about the identifier parent property in Reed-Solomon codes , 2010, Comput. Secur..

[15]  Dan Collusion-Secure Fingerprinting for Digital Data , 2002 .

[16]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[17]  G. Cohen,et al.  Asymptotic Overview on Separating Codes , 2003 .

[18]  Gábor Simonyi,et al.  Separating Partition Systems and Locally Different Sequences , 1988, SIAM J. Discret. Math..