Recent Progress in Advanced Materials for Lithium Ion Batteries

The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

[1]  Fuminori Mizuno,et al.  A high energy-density tin anode for rechargeable magnesium-ion batteries. , 2013, Chemical communications.

[2]  Jiajun Chen A review of nanostructured lithium ion battery materials via low temperature synthesis. , 2012, Recent patents on nanotechnology.

[3]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[4]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[5]  J. Tarascon,et al.  Hydrothermal synthesis, silver decoration and electrochemistry of LiMPO4 (M = Fe, Mn, and Co) single crystals , 2012 .

[6]  X. Lou,et al.  Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties , 2012 .

[7]  Seung M. Oh,et al.  Olivine LiCoPO4–carbon composite showing high rechargeable capacity , 2012 .

[8]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[9]  Li Lu,et al.  A high-performance LiCoPO4/C core/shell composite for Li-ion batteries , 2012 .

[10]  X. Lou,et al.  Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. , 2012, Nanoscale.

[11]  Jing Ning,et al.  Reduced Graphene Oxide‐Mediated Growth of Uniform Tin‐Core/Carbon‐Sheath Coaxial Nanocables with Enhanced Lithium Ion Storage Properties , 2012, Advanced materials.

[12]  Allen G. Oliver,et al.  Electrolyte roadblocks to a magnesium rechargeable battery , 2012 .

[13]  Timothy S. Arthur,et al.  Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries , 2012 .

[14]  Itaru Honma,et al.  Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. , 2012, Nano letters.

[15]  X. Lou,et al.  Synthesis of SnO2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties , 2011 .

[16]  Seung M. Oh,et al.  Micrometer‐Sized, Nanoporous, High‐Volumetric‐Capacity LiMn0.85Fe0.15PO4 Cathode Material for Rechargeable Lithium‐Ion Batteries , 2011, Advanced materials.

[17]  T. Tyson,et al.  Nanospheres of a New Intermetallic FeSn5 Phase: Synthesis, Magnetic Properties and Anode Performance in Li‐Ion Batteries. , 2011 .

[18]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[19]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[20]  D. Aurbach,et al.  Significantly improved cycling performance of LiCoPO4 cathodes , 2011 .

[21]  P. Bruce,et al.  Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. , 2011, Journal of the American Chemical Society.

[22]  J. Bai,et al.  In Situ Hydrothermal Synthesis of LiFePO4 Studied by Synchrotron , 2011 .

[23]  Anti Liivat,et al.  Li-ion migration in Li2FeSiO4-related cathode materials: A DFT study , 2011 .

[24]  X. Lou,et al.  SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. , 2011, Chemical communications.

[25]  Jason Graetz,et al.  Study of antisite defects in hydrothermally prepared LiFePO₄ by in situ X-ray diffraction. , 2011, ACS applied materials & interfaces.

[26]  HoChun Yoo,et al.  Flexible Morphology Design of 3D‐Macroporous LiMnPO4 Cathode Materials for Li Secondary Batteries: Ball to Flake , 2011 .

[27]  X. Lou,et al.  Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. , 2011, Journal of the American Chemical Society.

[28]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[29]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[30]  M. Whittingham,et al.  Electrochemical Behavior of the Amorphous Tin–Cobalt Anode , 2010 .

[31]  Bruno Scrosati,et al.  High‐Performance Carbon‐LiMnPO4 Nanocomposite Cathode for Lithium Batteries , 2010 .

[32]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[33]  Yun-Sung Lee,et al.  Adipic acid assisted sol–gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties , 2010 .

[34]  W. Han,et al.  Sn/SnOx Core−Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity , 2010 .

[35]  Marca M. Doeff Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites , 2010 .

[36]  Yu‐Guo Guo,et al.  Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries , 2010 .

[37]  W. Han,et al.  Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. , 2010, ACS applied materials & interfaces.

[38]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[39]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[40]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[41]  G. Graff,et al.  Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. , 2010, ACS nano.

[42]  Huijuan Zhang,et al.  Morphology-controlled synthesis of SnO(2) nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. , 2010, Small.

[43]  L. Archer,et al.  One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties , 2009 .

[44]  J. Tarascon,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 , 2009 .

[45]  Robert Dominko,et al.  Li2MSiO4 (M = Fe and/or Mn) cathode materials , 2008 .

[46]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[47]  Yong Yang,et al.  Nanostructured Li2FeSiO4 Electrode Material Synthesized through Hydrothermal-Assisted Sol-Gel Process , 2008 .

[48]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[49]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[50]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[51]  D. Deng,et al.  Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage , 2008 .

[52]  Yong‐Mook Kang,et al.  The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials , 2008 .

[53]  Peter Y. Zavalij,et al.  The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications , 2008 .

[54]  P. Bruce,et al.  The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries. , 2008, Chemical communications.

[55]  Jiajun Chen,et al.  Hydrothermal synthesis of cathode materials , 2007 .

[56]  Yong Yang,et al.  Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries , 2007 .

[57]  M. Whittingham,et al.  Characterization of Amorphous and Crystalline Tin–Cobalt Anodes , 2007 .

[58]  P. Bruce,et al.  The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries , 2007 .

[59]  Qiang Wang,et al.  In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous‐Tube Structure as Anode for Lithium Batteries , 2007 .

[60]  Robert Dominko,et al.  Beyond One-Electron Reaction in Li Cathode Materials: Designing Li2MnxFe1-xSiO4 , 2007 .

[61]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[62]  Yong-Mook Kang,et al.  Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. , 2007, Angewandte Chemie.

[63]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[64]  M. Inagaki,et al.  Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery , 2006 .

[65]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[66]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[67]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .

[68]  Torbjörn Gustafsson,et al.  The lithium extraction/insertion mechanism in Li2FeSiO4 , 2006 .

[69]  Jiajun Chen,et al.  Hydrothermal synthesis of lithium iron phosphate , 2006 .

[70]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[71]  Jaephil Cho,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery. , 2005 .

[72]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[73]  Mijung Noh,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery , 2005 .

[74]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[75]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[76]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[77]  P. Kumta,et al.  Sn/C composite anodes for Li-ion batteries , 2004 .

[78]  M. Whittingham,et al.  Anodes for lithium batteries: tin revisited , 2003 .

[79]  M. Whittingham,et al.  Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides , 2003 .

[80]  J. Richardson,et al.  X-ray and neutron diffraction studies on "Li4.4Sn". , 2003, Inorganic chemistry.

[81]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[82]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[83]  J. Yamaki,et al.  Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries , 2002 .

[84]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[85]  Linda F. Nazar,et al.  The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .

[86]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[87]  J. Tarascon,et al.  Searching for new anode materials for the Li-ion technology: time to deviate from the usual path , 2001 .

[88]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[89]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[90]  X. B. Zhang,et al.  Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling , 1998 .

[91]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[92]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[93]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[94]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.