Near-field cavity optomechanics with nanomechanical oscillators

[1]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[2]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[3]  Eva M. Weig,et al.  Universal transduction scheme for nanomechanical systems based on dielectric forces , 2009, Nature.

[4]  H. Miao,et al.  Standard quantum limit for probing mechanical energy quantization. , 2009, Physical review letters.

[5]  T. Kippenberg,et al.  Cryogenic properties of optomechanical silica microcavities , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[6]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[7]  O. Arcizet,et al.  Ultralow dissipation optomechanical resonators on a chip , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[8]  T. Briant,et al.  A scheme to probe optomechanical correlations between two optical beams down to the quantum level , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[9]  M. V. Gurudev Dutt,et al.  Strong Magnetic Coupling Between an Electronic Spin Qubit and a Mechanical Resonator , 2008, 0806.3606.

[10]  K Hammerer,et al.  Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles. , 2008, Physical review letters.

[11]  Hiroshi Yamaguchi,et al.  Motion detection of a micromechanical resonator embedded in a d.c. SQUID , 2008 .

[12]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature nanotechnology.

[13]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[14]  J. Teufel,et al.  Dynamical backaction of microwave fields on a nanomechanical oscillator. , 2008, Physical review letters.

[15]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[16]  O. Arcizet,et al.  High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.

[17]  D. Goldhaber-Gordon,et al.  An off-board quantum point contact as a sensitive detector of cantilever motion , 2008, 0803.1464.

[18]  Scott S. Verbridge,et al.  A megahertz nanomechanical resonator with room temperature quality factor over a million , 2008 .

[19]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[20]  Ivan Favero,et al.  Cavity cooling of a nanomechanical resonator by light scattering , 2007, 0707.3117.

[21]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[22]  T. Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[23]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[24]  N. Flowers-Jacobs,et al.  Intrinsic noise properties of atomic point contact displacement detectors. , 2007, Physical review letters.

[25]  S. Girvin,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[26]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[27]  S. Gigan,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[28]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[29]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[30]  Scott S. Verbridge,et al.  High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .

[31]  Warwick P. Bowen,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[32]  A. Hajimiri,et al.  Characterization of a Radiation-Pressure-Driven Micromechanical Oscillator , 2006, 2006 IEEE International Frequency Control Symposium and Exposition.

[33]  L. Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[34]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[35]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[36]  K. Vahala,et al.  Radiation-pressure-driven micro-mechanical oscillator , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[37]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[38]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[39]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[40]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[41]  Michael L. Gorodetsky,et al.  Fundamental thermal fluctuations in microspheres , 2004 .

[42]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[43]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[44]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[45]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[46]  Maxim Zalalutdinov,et al.  Autoparametric optical drive for micromechanical oscillators , 2001 .

[47]  M. Roukes,et al.  Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[48]  Brent E. Little,et al.  Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators , 1999 .

[49]  Ilkka Tittonen,et al.  Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits , 1999 .

[50]  M. Roukes,et al.  A nanometre-scale mechanical electrometer , 1998, Nature.

[51]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[52]  A. Heidmann,et al.  Quantum nondemolition measurement by optomechanical coupling , 1997 .

[53]  S. Schiller,et al.  Quantum non-demolition measurements , 1995 .

[54]  D. Weiss,et al.  Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. , 1995, Optics letters.

[55]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[56]  Reynaud,et al.  Quantum-noise reduction using a cavity with a movable mirror. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[57]  Acknowledgements , 1992, Experimental Gerontology.

[58]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[59]  G. Milburn,et al.  Quantum non demolition measurements , 1983 .

[60]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[61]  V. Braginsky,et al.  Measurement of Weak Forces in Physics Experiments , 1977 .

[62]  K. Weiss Vibration Problems in Engineering , 1965, Nature.

[63]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[64]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .