Hydantoin derivative formation from oxidation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) and incorporation of 14C-labeled 8-oxodG into the DNA of human breast cancer cells.

[1]  Robert Langer,et al.  In vivo release from a drug delivery MEMS device. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[2]  M. P. Baker,et al.  EVALUATION OF MICRODOSING STRATEGIES FOR STUDIES IN PRECLINICAL DRUG DEVELOPMENT: DEMONSTRATION OF LINEAR PHARMACOKINETICS IN DOGS OF A NUCLEOSIDE ANALOG OVER A 50-FOLD DOSE RANGE , 2004, Drug Metabolism and Disposition.

[3]  S. Tannenbaum,et al.  Spirodihydantoin is a minor product of 5-hydroxyisourate in urate oxidation. , 2004, Organic letters.

[4]  Roger A. Jones,et al.  Formation of 13C-, 15N-, and 18O-labeled guanidinohydantoin from guanosine oxidation with singlet oxygen. Implications for structure and mechanism. , 2003, Journal of the American Chemical Society.

[5]  J. Cadet,et al.  Oxidative damage to DNA: formation, measurement and biochemical features. , 2003, Mutation research.

[6]  William L. Neeley,et al.  The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. , 2003, Biochemistry.

[7]  Graham Bench,et al.  A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. , 2003, Analytical chemistry.

[8]  C. Burrows,et al.  In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). , 2002, Biochemistry.

[9]  Kent D. Sugden,et al.  Guanine and 7,8-dihydro-8-oxo-guanine-specific oxidation in DNA by chromium(V). , 2002, Environmental health perspectives.

[10]  M. Leipold,et al.  Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanine oxidation by transition metals. , 2002, Environmental health perspectives.

[11]  S. Tannenbaum,et al.  Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. , 2002, Biochemistry.

[12]  C. Burrows,et al.  The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine. , 2001, Organic letters.

[13]  C. Burrows,et al.  Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. , 2001, Chemical research in toxicology.

[14]  M. Leipold,et al.  Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. , 2000, Biochemistry.

[15]  S. Nampalli,et al.  Efficient synthesis of 8-oxo-dGTP: a mutagenic nucleotide. , 2000, Bioorganic & medicinal chemistry letters.

[16]  C. Burrows,et al.  Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-Oxo-7,8-dihydroguanosine. , 2000, Organic letters.

[17]  S. Tannenbaum,et al.  Peroxynitrite reaction products of 3',5'-di-O-acetyl-8-oxo-7, 8-dihydro-2'-deoxyguanosine. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  James G. Muller,et al.  Sequence and Stacking Dependence of 8-Oxoguanine Oxidation: Comparison of One-Electron vs Singlet Oxygen Mechanisms , 1999 .

[19]  G. Hampikian,et al.  Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Meunier,et al.  Efficient Oxidation of 2‘-Deoxyguanosine by Mn-TMPyP/KHSO5 to Imidazolone dIz without Formation of 8-Oxo-dG , 1998 .

[21]  Jean Cadet,et al.  Characterization and Chemical Stability of Photooxidized Oligonucleotides that Contain 2,2-Diamino-4-[(2-deoxy-β-d-erythro-pentofuranosyl)amino]-5(2H)-oxazolone , 1998 .

[22]  R. Hickerson,et al.  Gel electrophoretic detection of 7,8-dihydro-8-oxoguanine and 7, 8-dihydro-8-oxoadenine via oxidation by Ir (IV). , 1998, Nucleic acids research.

[23]  C. Burrows,et al.  Oxidative Nucleobase Modifications Leading to Strand Scission. , 1998, Chemical reviews.

[24]  Slobodan V. Jovanovic,et al.  How Easily Oxidizable Is DNA? One-Electron Reduction Potentials of Adenosine and Guanosine Radicals in Aqueous Solution , 1997 .

[25]  J. Cadet,et al.  Reaction of singlet oxygen with 2'-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. , 1995, Chemical research in toxicology.

[26]  J. Cadet,et al.  Photosensitized formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine) in DNA by riboflavin: a nonsinglet oxygen-mediated reaction , 1992 .

[27]  A. Sartorelli,et al.  8-Substituted guanosine and 2'-deoxyguanosine derivatives as potential inducers of the differentiation of Friend erythroleukemia cells. , 1985, Journal of medicinal chemistry.

[28]  William L. Neeley,et al.  Urea lesion formation in DNA as a consequence of 7,8-dihydro-8-oxoguanine oxidation and hydrolysis provides a potent source of point mutations. , 2005, Chemical research in toxicology.

[29]  J. Cadet,et al.  Repair and mutagenic potential of oxaluric acid, a major product of singlet oxygen-mediated oxidation of 8-oxo-7,8-dihydroguanine. , 2001, Chemical research in toxicology.

[30]  C. Burrows,et al.  Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. , 1999, Nucleic acids research.

[31]  G. W. Buchko,et al.  1 H, 13C and 15N nuclear magnetic resonance analysis and chemical features of the two main radical oxidation products of 2′-deoxyguanosine: oxazolone and imidazolone nucleosides , 1996 .