Infinite convolution products and refinable distributions on Lie groups

Sufficient conditions for the convergence in distribution of an infinite convolution product p1 * P2 * ... of measures on a connected Lie group 5 with respect to left invariant Haar measure are derived. These conditions are used to construct distributions / that satisfy To = / where T is a refinement operator constructed from a measure t and a dilation automorphism A. The existence of A implies 5 is nilpotent and simply connected and the exponential map is an analytic homeomorphism. Furthermore, there exists a unique minimal compact subset IC C 5 such that for any open set U containing IC, and for any distribution f on G with compact support, there exists an integer n(U, f) such that n > n(U, f) implies supp(Tnf) C U. If p is supported on an A-invariant uniform subgroup r, then T is related, by an intertwining operator, to a transition operator W on C((r). Necessary and sufficient conditions for Tnf to converge to / E L2, and for the F-translates of / to be orthogonal or to form a Riesz basis, are characterized in terms of the spectrum of the restriction of W to functions supported on Q K:= C 'Cn r.

[1]  L. Villemoes Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .

[2]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  G. Strang,et al.  Fourier Analysis of the Finite Element Method in Ritz-Galerkin Theory , 1969 .

[5]  V. Varadarajan Lie groups, Lie algebras, and their representations , 1974 .

[6]  Seok-Jin Kang,et al.  Lie Algebras and Their Representations , 1996 .

[7]  Wayne Lawton,et al.  Multiresolution properties of the wavelet Galerkin operator , 1991 .

[8]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[9]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[10]  Peter N. Heller,et al.  The Spectral Theory of Multiresolution Operators and Applications , 1994 .

[11]  Albert Cohen,et al.  Biorthogonal wavelet bases , 1995 .

[12]  J. Dixmier,et al.  Derivations of Nilpotent Lie Algebras , 1957 .

[13]  J. Dyer A nilpotent Lie algebra with nilpotent automorphism group , 1970 .

[14]  R. Long,et al.  Biorthogonal Wavelet Bases on Rd , 1995 .

[15]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[16]  Garrett Birkhoff,et al.  A note on topological groups , 1936 .

[17]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[18]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[19]  G. Folland,et al.  Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .

[20]  R. Strichartz A Guide to Distribution Theory and Fourier Transforms , 1994 .

[21]  Albert Cohen Ondelettes, analyses multi résolutions et traitement numérique du signal , 1990 .

[22]  Steven A. Gaal,et al.  Linear analysis and representation theory , 1973 .

[23]  P. Lemarié,et al.  Base d'ondelettes sur les groupes de Lie stratifiés , 1989 .

[24]  Nira Dyn,et al.  Analysis of uniform binary subdivision schemes for curve design , 1991 .

[25]  Nicolas Bourbaki,et al.  Eléments de mathématique : groupes et algèbres de Lie , 1972 .

[26]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[27]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[28]  L. Baggett,et al.  General Existence Theorems for Orthonormal Wavelets, an Abstract Approach , 1995 .

[29]  W. Ledermann INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .

[30]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[31]  D. Larson,et al.  Wandering Vectors for Unitary Systems and Orthogonal Wavelets , 1998 .

[32]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[33]  S. L. Lee,et al.  Convergence of multidimensional cascade algorithm , 1998 .

[34]  Michael E. Taylor,et al.  Noncommutative Harmonic Analysis , 1986 .

[35]  Y. Meyer Wavelets and Operators , 1993 .

[36]  L. Schwartz Théorie des distributions , 1966 .

[37]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae , 1946 .

[38]  F. Greenleaf,et al.  Basic theory and examples , 1990 .

[39]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[40]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[41]  G. Beck,et al.  Actualités scientifiques et industrielles , 1933 .

[42]  Rong-Qing Jia,et al.  Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..

[43]  D. Sattinger,et al.  Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .

[44]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[45]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[46]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[47]  F. Greenleaf,et al.  Representations of nilpotent Lie groups and their applications , 1989 .

[48]  N. Jacobson A note on automorphisms and derivations of Lie algebras , 1955 .

[49]  Zuowei Shen Refinable function vectors , 1998 .

[50]  Shizuo Kakutani Über die Metrisation der topologischen Gruppen , 1936 .

[51]  H. Samelson Notes on Lie algebras , 1969 .

[52]  Loïc Herve Construction and regularity of scaling functions , 1995 .

[53]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[54]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .