Embedded exponential-type low-regularity integrators for KdV equation under rough data

In this paper, we introduce a novel class of embedded exponential-type low-regularity integrators (ELRIs) for solving the KdV equation and establish their optimal convergence results under rough initial data. The schemes are explicit and efficient to implement. By rigorous error analysis, we first show that the ELRI scheme provides the first order accuracy in $H^\gamma$ for initial data in $H^{\gamma+1}$ for $\gamma>\frac12$. Moreover, by adding two more correction terms to the first order scheme, we show a second order ELRI that provides the second order accuracy in $H^\gamma$ for initial data in $H^{\gamma+3}$ for $\gamma\ge0$. The proposed ELRIs further reduce the regularity requirement of existing methods so far for optimal convergence. The theoretical results are confirmed by numerical experiments, and comparisons with existing methods illustrate the efficiency of the new methods.

[1]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[2]  Yan Wang,et al.  Low-regularity integrators for nonlinear Dirac equations , 2019, Math. Comput..

[3]  H. Holden,et al.  Operator Splitting Methods for Generalized Korteweg-De Vries Equations , 1999 .

[4]  Jean Bourgain,et al.  On an endpoint Kato-Ponce inequality , 2014, Differential and Integral Equations.

[5]  Fr'ed'eric Lagoutiere,et al.  Error estimates of finite difference schemes for the Korteweg–de Vries equation , 2017, IMA Journal of Numerical Analysis.

[6]  J. Bona,et al.  Fully discrete galerkin methods for the korteweg-de vries equation☆ , 1986 .

[7]  Katharina Schratz,et al.  Resonance-based schemes for dispersive equations via decorated trees , 2022, Forum of Mathematics, Pi.

[8]  Terence Tao,et al.  Multilinear estimates for periodic KdV equations, and applications , 2001, math/0110049.

[9]  Helge Holden,et al.  Operator splitting for partial differential equations with Burgers nonlinearity , 2011, Math. Comput..

[10]  Ohannes A. Karakashian,et al.  On some high-order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation , 1985 .

[11]  F. Smith,et al.  Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  Kenneth H. Karlsen,et al.  Operator splitting for the KdV equation , 2009, Math. Comput..

[13]  Dong Li,et al.  On Kato–Ponce and fractional Leibniz , 2016, Revista Matemática Iberoamericana.

[14]  Alexander Ostermann,et al.  A Fourier Integrator for the Cubic Nonlinear Schrödinger Equation with Rough Initial Data , 2018, SIAM J. Numer. Anal..

[15]  Ohannes A. Karakashian,et al.  On optimal high-order in time approximations for the Korteweg-de Vries equation , 1990 .

[16]  Charalambos Makridakis,et al.  A posteriori error estimates for discontinuous Galerkin methods for the generalized Korteweg-de Vries equation , 2014, Math. Comput..

[17]  Yi Wu Global well-posedness for periodic generalized Korteweg-de Vries equation , 2017 .

[18]  A. Quarteroni,et al.  Error analysis for spectral approximation of the Korteweg-De Vries equation , 1988 .

[19]  Jie Shen,et al.  A New Dual-Petrov-Galerkin Method for Third and Higher Odd-Order Differential Equations: Application to the KDV Equation , 2003, SIAM J. Numer. Anal..

[20]  T. Kappeler,et al.  Global wellposedness of KdV in $H^{-1}({\mathbb T},{\mathbb R})$ , 2006 .

[21]  B. Guo,et al.  On spectral approximations using modified Legendre rational functions: Application to the Korteweg-de Vries equation on the half line , 2001 .

[22]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[23]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[24]  Wu Yifei,et al.  GLOBAL WELL-POSEDNESS FOR PERIODIC GENERALIZED KORTEWEG-DE VRIES EQUATION , 2017 .

[25]  H. Takaoka,et al.  Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ , 2001 .

[26]  Katharina Schratz,et al.  An exponential-type integrator for the KdV equation , 2016, Numerische Mathematik.

[27]  Alexander Ostermann,et al.  Low Regularity Exponential-Type Integrators for Semilinear Schrödinger Equations , 2016, Foundations of Computational Mathematics.

[28]  Yulong Xing,et al.  Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation , 2013, Math. Comput..

[29]  Hailiang Liu,et al.  A local discontinuous Galerkin method for the Korteweg-de Vries equation with boundary effect , 2006, J. Comput. Phys..

[30]  Alexander Ostermann,et al.  A Lawson-type exponential integrator for the Korteweg–de Vries equation , 2018, IMA Journal of Numerical Analysis.

[31]  Christian Klein,et al.  Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation , 2006 .

[32]  Yongsheng Li Convergence of an Embedded Exponential-Type Low-Regularity Integrators for the KdV Equation without Loss of Regularity , 2021 .

[33]  Alexander Ostermann,et al.  Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity , 2019, Found. Comput. Math..

[34]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[35]  Weiwei Sun,et al.  Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation , 2001, SIAM J. Numer. Anal..

[36]  R. Killip,et al.  KdV is well-posed in H–1 , 2018, Annals of Mathematics.

[37]  A. D. Bouard,et al.  Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise , 2007, 0901.1965.

[38]  M. Gubinelli Rough solutions for the periodic Korteweg--de~Vries equation , 2006 .

[39]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[40]  Yifei Wu,et al.  Optimal convergence of a second order low-regularity integrator for the KdV equation , 2021, IMA Journal of Numerical Analysis.

[41]  Terence Tao,et al.  Sharp global well-posedness for KdV and modified KdV on ℝ and , 2003 .