Segmentation and Shape Tracking of Whole Fluorescent Cells Based on the Chan–Vese Model

We present a fast and robust approach to tracking the evolving shape of whole fluorescent cells in time-lapse series. The proposed tracking scheme involves two steps. First, coherence-enhancing diffusion filtering is applied on each frame to reduce the amount of noise and enhance flow-like structures. Second, the cell boundaries are detected by minimizing the Chan-Vese model in the fast level set-like and graph cut frameworks. To allow simultaneous tracking of multiple cells over time, both frameworks have been integrated with a topological prior exploiting the object indication function. The potential of the proposed tracking scheme and the advantages and disadvantages of both frameworks are demonstrated on 2-D and 3-D time-lapse series of rat adipose-derived mesenchymal stem cells and human lung squamous cell carcinoma cells, respectively.

[1]  Pavel Matula,et al.  A Fast Level Set-Like Algorithm for Region-Based Active Contours , 2010, ISVC.

[2]  Jens Rittscher,et al.  Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis , 2011, Medical Image Anal..

[3]  Thierry Blu,et al.  Efficient energies and algorithms for parametric snakes , 2004, IEEE Transactions on Image Processing.

[4]  Christophe Zimmer,et al.  Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces , 2005, IEEE Transactions on Image Processing.

[5]  Scott T. Acton,et al.  Level set analysis for leukocyte detection and tracking , 2004, IEEE Transactions on Image Processing.

[6]  W. Clem Karl,et al.  A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution , 2008, IEEE Transactions on Image Processing.

[7]  Carlos Ortiz-de-Solorzano,et al.  Quantitative in vivo microscopy: the return from the 'omics'. , 2006, Current opinion in biotechnology.

[8]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  M. Unser,et al.  The colored revolution of bioimaging , 2006, IEEE Signal Processing Magazine.

[10]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[11]  Pushmeet Kohli,et al.  Dynamic Graph Cuts for Efficient Inference in Markov Random Fields , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Jean-Christophe Olivo-Marin,et al.  3-D Active Meshes: Fast Discrete Deformable Models for Cell Tracking in 3-D Time-Lapse Microscopy , 2011, IEEE Transactions on Image Processing.

[13]  Revathi Ananthakrishnan,et al.  The Forces Behind Cell Movement , 2007, International journal of biological sciences.

[14]  Jean-Christophe Olivo-Marin,et al.  On the digital trail of mobile cells , 2006, IEEE Signal Processing Magazine.

[15]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[16]  Adel Said Elmaghraby,et al.  Graph cut optimization for the Mumford-Shah model , 2007 .

[17]  Isabelle Bloch,et al.  Multiple hypothesis tracking in microscopy images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[18]  Michal Kozubek,et al.  Fast point-based 3-D alignment of live cells , 2006, IEEE Transactions on Image Processing.

[19]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[20]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[21]  Vannary Meas-Yedid,et al.  Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing , 2002, IEEE Transactions on Medical Imaging.

[22]  Takeo Kanade,et al.  Cell population tracking and lineage construction with spatiotemporal context , 2008, Medical Image Anal..

[23]  T. Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik a Survey on Variational Optic Flow Methods for Small Displacements a Survey on Variational Optic Flow Methods for Small Displacements , 2022 .

[24]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[25]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[26]  Pavel Matula,et al.  Simultaneous Tracking of Multiple Objects Using Fast Level Set-Like Algorithm , 2010, MEMICS.

[27]  Jean-Christophe Olivo-Marin,et al.  Coupled parametric active contours , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[29]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Jens Rittscher,et al.  Spatio-temporal cell cycle phase analysis using level sets and fast marching methods , 2009, Medical Image Anal..

[31]  F. Gibou A fast hybrid k-means level set algorithm for segmentation , 2005 .

[32]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[33]  Xavier Bresson,et al.  Completely Convex Formulation of the Chan-Vese Image Segmentation Model , 2012, International Journal of Computer Vision.

[34]  Michael Unser,et al.  Parametric Snakes in Microscopy , 2012 .

[35]  Philippe Van Ham,et al.  Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes , 2005, IEEE Transactions on Medical Imaging.

[36]  B. Roysam,et al.  Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells , 2006, Cell cycle.

[37]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[38]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[39]  Scott T. Acton,et al.  Tracking leukocytes in vivo with shape and size constrained active contours , 2002, IEEE Transactions on Medical Imaging.

[40]  Martin Maska,et al.  A Simple Topology Preserving Max-Flow Algorithm for Graph Cut Based Image Segmentation , 2010, MEMICS.

[41]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[42]  S. Esedoglu,et al.  Threshold dynamics for the piecewise constant Mumford-Shah functional , 2006 .

[43]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[44]  Jan Kybic,et al.  Discrete curvature calculation for fast level set segmentation , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[45]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[46]  Carlos Ortiz-de-Solorzano,et al.  Fast tracking of fluorescent cells based on the Chan-Vese model , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[47]  Wiro J. Niessen,et al.  Quantitative comparison of tracking methods for motion analysis in tagged MRI , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[48]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[49]  I. Smal,et al.  Tracking in cell and developmental biology. , 2009, Seminars in cell & developmental biology.

[50]  Wiro J. Niessen,et al.  Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy , 2010, IEEE Transactions on Medical Imaging.

[51]  Xiaobo Zhou,et al.  Multiple Nuclei Tracking Using Integer Programming for Quantitative Cancer Cell Cycle Analysis , 2010, IEEE Transactions on Medical Imaging.

[52]  Pavel Matula,et al.  Graph Cuts and Approximation of the Euclidean Metric on Anisotropic Grids , 2010, VISAPP.

[53]  T. Chan,et al.  A fast algorithm for level set based optimization , 2002 .

[54]  Karl Rohr,et al.  Analysis of viral surfing based on fluorescence microscopy imaging and automatic tracking , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[55]  Johan Montagnat,et al.  Shape and Topology Constraints on Parametric Active Contours , 2001, Comput. Vis. Image Underst..