Recognizing Hamming Graphs in Linear Time and space

Hamming graphs are, by definition, the Cartesian product of complete graphs. In the bipartite case these graphs are hypercubes. We present an algorithm recognizing Hamming graphs in linear time and space. This improves a previous algorithm which was linear in time but not in space. This also favorably compares to the general decomposition algorithms of graphs with respect to the Cartesian product, none of which is linear.

[1]  V. G. Vizing The cartesian product of graphs , 1963 .

[2]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[3]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[4]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[5]  Friedhelm Meyer auf der Heide,et al.  Dynamic perfect hashing: upper and lower bounds , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[6]  W. Ilfried,et al.  On the Complexity of Recognizing Hamming Graphs and Related Classes of Graphs , 1996 .

[7]  Peter Winkler,et al.  Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..

[8]  Elke Wilkeit,et al.  The retracts of Hamming graphs , 1992, Discret. Math..

[9]  Kabekode V. S. Bhat On the Complexity of Testing a Graph for N-Cube , 1980, Inf. Process. Lett..

[10]  Hans-Jürgen Bandelt,et al.  Quasi-median graphs and algebras , 1994, J. Graph Theory.

[11]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[12]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  Friedhelm Meyer auf der Heide,et al.  Dynamic Perfect Hashing: Upper and Lower Bounds , 1994, SIAM J. Comput..

[14]  H. M. Mulder The interval function of a graph , 1980 .

[15]  Elke Wilkeit,et al.  Isometric embeddings in Hamming graphs , 1990, J. Comb. Theory, Ser. B.