Recognizing Hamming Graphs in Linear Time and space
暂无分享,去创建一个
[1] V. G. Vizing. The cartesian product of graphs , 1963 .
[2] Gert Sabidussi,et al. Graph multiplication , 1959 .
[3] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[4] Larry Carter,et al. Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..
[5] Friedhelm Meyer auf der Heide,et al. Dynamic perfect hashing: upper and lower bounds , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[6] W. Ilfried,et al. On the Complexity of Recognizing Hamming Graphs and Related Classes of Graphs , 1996 .
[7] Peter Winkler,et al. Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..
[8] Elke Wilkeit,et al. The retracts of Hamming graphs , 1992, Discret. Math..
[9] Kabekode V. S. Bhat. On the Complexity of Testing a Graph for N-Cube , 1980, Inf. Process. Lett..
[10] Hans-Jürgen Bandelt,et al. Quasi-median graphs and algebras , 1994, J. Graph Theory.
[11] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[12] Jan van Leeuwen,et al. Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[13] Friedhelm Meyer auf der Heide,et al. Dynamic Perfect Hashing: Upper and Lower Bounds , 1994, SIAM J. Comput..
[14] H. M. Mulder. The interval function of a graph , 1980 .
[15] Elke Wilkeit,et al. Isometric embeddings in Hamming graphs , 1990, J. Comb. Theory, Ser. B.