Two dimensional discrete statistical shape models construction

In this paper, we present a discrete approach to 2D statistical shape models construction. An object is modeled in terms of landmark points on its contour. An optimized process of intrinsic discrete properties computes then curvilinear position, curvature and normal vector for each point. The approach uses after a dynamic programming process to match points of different shapes. By identifying matched points on a set of training examples, a statistical approach with principal component analysis, computes the mean object shape, the major modes of shape variation and extracts a compact and generic model.

[1]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Laure Tougne,et al.  On the min DSS problem of closed discrete curves , 2003, Discret. Appl. Math..

[3]  Timothy F. Cootes,et al.  Statistical models of appearance for computer vision , 1999 .

[4]  Laure Tougne,et al.  Two-Dimensional Discrete Shape Matching and Recognition , 2006, IWCIA.

[5]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[6]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Tomaso A. Poggio,et al.  Multidimensional morphable models , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[8]  Lawrence H. Staib,et al.  IEEE Workshop on Mathematical Methods in Biomedical Image Analysis , 2001 .

[9]  Philip N. Klein,et al.  Constructing 2D curve atlases , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[10]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[11]  Timothy F. Cootes,et al.  Non-Linear Point Distribution Modelling using a Multi-Layer Perceptron , 1995, BMVC.

[12]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[14]  Alex Pentland,et al.  Closed-Form Solutions for Physically Based Shape Modeling and Recognition , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Jinah Park,et al.  Deformable models with parameter functions for cardiac motion analysis from tagged MRI data , 1996, IEEE Trans. Medical Imaging.

[16]  Isabelle Debled-Rennesson,et al.  Segmentation of Discrete Curves into Fuzzy Segments , 2003, Electron. Notes Discret. Math..

[17]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[18]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[19]  Timothy F. Cootes,et al.  A Non-linear Generalisation of PDMs using Polynomial Regression , 1994, BMVC.

[20]  David C. Hogg,et al.  Extending the Point Distribution Model Using Polar Coordinates , 1995, CAIP.