New Methods for Image Generation and Compression

We survey new methods in “Computational Fractal Geometry.” We start with M. Barnsley's pioneering Iterative Function Systems and our extension of this method, in particular Mutually Recursive Function Systems. Further we discuss (Probabilistic) Finite Generators, L-systems and other methods as used for image generations.

[1]  Karel Culik,et al.  Affine Automata: A Technique to Generate Complex Images , 1990, MFCS.

[2]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[3]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[4]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[5]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[6]  Przemyslaw Prusinkiewicz,et al.  Applications of L-systems to computer imagery , 1986, Graph-Grammars and Their Application to Computer Science.

[7]  J. Hartmanis Sets of Numbers Defined by Finite Automata , 1967 .

[8]  Maurice Nivat,et al.  Adherences of Languages , 1980, J. Comput. Syst. Sci..

[9]  Shimon Even Rational Numbers and Regular Events , 1964, IEEE Trans. Electron. Comput..

[10]  Alvy Ray Smith,et al.  Plants, fractals, and formal languages , 1984, SIGGRAPH.