Ultrafast Dy3+:fluoride fiber laser beyond 3 μm.

We report a passively mode-locked Dy3+:fluoride fiber laser emitting around 3.1 μm based on the nonlinear polarization evolution technique in a ring configuration, using in-band pumping at 2.8 μm. Transform-limited and self-starting mode-locked pulses as short as 828 fs with a center wavelength around 3.1 μm and repetition rates up to 60 MHz are obtained. In the single-pulse regime, a maximum average output power of 204 mW is measured, corresponding to a peak power of 4.2 kW and a pulse energy of 4.8 nJ. This first demonstration, to the best of our knowledge, of a femtosecond mode-locked fiber laser emitting directly beyond 3 μm paves the way for frequency comb synthesis in the molecular fingerprint region.

[1]  Michel Piché,et al.  Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm. , 2016, Optics letters.

[2]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[3]  Jun Ye,et al.  Mid-Infrared Frequency Comb Fourier Transform Spectrometer , 2010, 1007.0716.

[4]  Irl N. Duling,et al.  Experimental study of sideband generation in femtosecond fiber lasers , 1994 .

[5]  Yi Yu,et al.  Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. , 2015, Optics express.

[6]  D. Hudson,et al.  Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class. , 2014, Optics letters.

[7]  Réal Vallée,et al.  30  W fluoride glass all-fiber laser at 2.94  μm. , 2015, Optics letters.

[8]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[9]  Michel Piché,et al.  Femtosecond fiber lasers reach the mid-infrared , 2015 .

[10]  Fuxi Gan,et al.  Optical properties of fluoride glasses: a review , 1995 .

[11]  Jérôme Genest,et al.  Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er³⁺: fluoride glass fiber laser. , 2014, Optics letters.

[12]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[13]  Jun Ye,et al.  Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. , 2010, Optics express.

[14]  G. K. L. Wong,et al.  Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre , 2015, Nature Photonics.

[15]  Robert A Norwood,et al.  Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser. , 2013, Optics letters.

[16]  Gianluca Galzerano,et al.  Design of an Efficient Pulsed Dy3+: ZBLAN Fiber Laser Operating in Gain Switching Regime , 2018, Journal of Lightwave Technology.

[17]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Stuart D. Jackson,et al.  Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass , 2010 .

[19]  S. Jackson,et al.  Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm. , 2018, Optics letters.

[20]  Réal Vallée,et al.  Understanding the fiber tip thermal runaway present in 3 µm fluoride glass fiber lasers. , 2012, Optics express.

[21]  R I Woodward,et al.  Generation of 70-fs pulses at 2.86  μm from a mid-infrared fiber laser. , 2017, Optics letters.

[22]  Chuji Wang,et al.  Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits , 2009, Sensors.

[23]  P. Laporta,et al.  Scanning micro-resonator direct-comb absolute spectroscopy , 2016, Scientific Reports.

[24]  N. Coluccelli,et al.  The optical frequency comb fibre spectrometer , 2016, Nature Communications.