Widespread loss of the silencing epigenetic mark H3K9me3 in astrocytes and neurons along with hippocampal-dependent cognitive impairment in C9orf72 BAC transgenic mice

[1]  P. Sivaramakrishnan,et al.  H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis , 2019, bioRxiv.

[2]  L. Petrucelli,et al.  Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity , 2019, Science.

[3]  L. Ferraiuolo,et al.  Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS , 2019, EBioMedicine.

[4]  Zhen Yan,et al.  Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer’s disease , 2019, Brain : a journal of neurology.

[5]  C. Crosio,et al.  Epigenetic Changes Associated with the Expression of Amyotrophic Lateral Sclerosis (ALS) Causing Genes , 2018, Neuroscience.

[6]  Hiroki Nakata Morphology of mouse seminiferous tubules , 2018, Anatomical Science International.

[7]  Wenyan Sun,et al.  Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies , 2018, Nature Neuroscience.

[8]  J. Hou,et al.  Effects of histone methyltransferase inhibitor chaetocin on histone H3K9 methylation of cultured ovine somatic cells and development of preimplantation cloned embryos. , 2018, Reproductive toxicology.

[9]  D. Adams,et al.  Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis , 2017, Nature Communications.

[10]  M. Rots,et al.  Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice , 2017, Brain : a journal of neurology.

[11]  Robert H. Brown,et al.  A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD , 2017, Molecular Neurodegeneration.

[12]  T. Hewitson,et al.  Epigenetic Modifications to H3K9 in Renal Tubulointerstitial Cells after Unilateral Ureteric Obstruction and TGF-β1 Stimulation , 2017, Front. Pharmacol..

[13]  Kun Wang,et al.  Loss of H3K9me3 Correlates with ATM Activation and Histone H2AX Phosphorylation Deficiencies in Hutchinson-Gilford Progeria Syndrome , 2016, PloS one.

[14]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[15]  S. Gasser,et al.  Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability , 2016, Nature Genetics.

[16]  L. Buée,et al.  Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin , 2016, Scientific Reports.

[17]  J. Lucas,et al.  Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome , 2016, Brain pathology.

[18]  Knut Engedal,et al.  Frontotemporal Dementia , 2016, Journal of geriatric psychiatry and neurology.

[19]  C. Allis,et al.  The molecular hallmarks of epigenetic control , 2016, Nature Reviews Genetics.

[20]  L. Petrucelli,et al.  ALS and FTD: an epigenetic perspective , 2016, Acta Neuropathologica.

[21]  C. Heyser,et al.  Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs , 2016, Neuron.

[22]  D. Borchelt,et al.  C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD , 2016, Neuron.

[23]  J. Rothstein,et al.  C9ORF72-ALS/FTD: Transgenic Mice Make a Come-BAC , 2016, Neuron.

[24]  S. Gasser,et al.  Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man , 2016, EMBO reports.

[25]  H. Horvitz,et al.  Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice , 2015, Neuron.

[26]  L. Petrucelli,et al.  C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD , 2015, Neuron.

[27]  C. Larabell,et al.  Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells , 2015, Stem cell reports.

[28]  Gail Mandel,et al.  A High-Resolution Imaging Approach to Investigate Chromatin Architecture in Complex Tissues , 2015, Cell.

[29]  Jianfeng Yao,et al.  Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells , 2015, Bioscience reports.

[30]  Christian A. Ross,et al.  Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS , 2015, Nature Neuroscience.

[31]  Elzo de Wit,et al.  Characterization and dynamics of pericentromere-associated domains in mice , 2015, Genome research.

[32]  F. Court,et al.  Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling , 2015, Front. Cell. Neurosci..

[33]  M. Grossman,et al.  C9orf72 promoter hypermethylation is neuroprotective , 2015, Neurology.

[34]  J. Déjardin,et al.  Constitutive heterochromatin formation and transcription in mammals , 2015, Epigenetics & Chromatin.

[35]  N. Shneider,et al.  Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death , 2014, Neuron.

[36]  A. Singleton,et al.  Identical twins with the C9orf72 repeat expansion are discordant for ALS , 2014, Neurology.

[37]  L. Petrucelli,et al.  Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients , 2014, Brain Research.

[38]  Annie Vogel-Ciernia,et al.  Examining Object Location and Object Recognition Memory in Mice , 2014, Current protocols in neuroscience.

[39]  D. Irwin,et al.  C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD , 2014, Acta Neuropathologica.

[40]  J. Yokoyama,et al.  C9ORF72 hexanucleotide repeats in behavioral and motor neuron disease: clinical heterogeneity and pathological diversity. , 2014, American journal of neurodegenerative disease.

[41]  Mackenzie W. Mathis,et al.  Necroptosis Drives Motor Neuron Death in Models of Both Sporadic and Familial ALS , 2014, Neuron.

[42]  M. Hemberg,et al.  Tau promotes neurodegeneration through global chromatin relaxation , 2014, Nature Neuroscience.

[43]  L. Petrucelli,et al.  Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood , 2013, Acta Neuropathologica.

[44]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[45]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[46]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[47]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[48]  B. van Zundert,et al.  Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress , 2013, Front. Cell. Neurosci..

[49]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[50]  Robert H. Brown,et al.  Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability. , 2013, Journal of neurophysiology.

[51]  M. Groudine,et al.  When untethered, something silent inside comes , 2013, Nucleus.

[52]  C. Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. , 2012 .

[53]  C. van Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum , 2012, Annals of medicine.

[54]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[55]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[56]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[57]  D. Reinberg,et al.  Facultative heterochromatin: is there a distinctive molecular signature? , 2007, Molecular cell.

[58]  F. Pauler,et al.  Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. , 2007, Molecular cell.

[59]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[60]  R. Ferrante,et al.  ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease , 2006, Proceedings of the National Academy of Sciences.

[61]  D. Neary,et al.  Frontotemporal dementia , 2005, The Lancet Neurology.

[62]  Stephan Sauer,et al.  The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. , 2005, Experimental cell research.

[63]  J. Martens,et al.  Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. , 2003, Molecular cell.

[64]  En Li,et al.  Suv 39 h-Mediated Histone H 3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin , 2003 .

[65]  Karl Mechtler,et al.  Loss of the Suv39h Histone Methyltransferases Impairs Mammalian Heterochromatin and Genome Stability , 2001, Cell.

[66]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[67]  Andrew J. Bannister,et al.  Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain , 2001, Nature.

[68]  Karl Mechtler,et al.  Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins , 2001, Nature.

[69]  Samir Guglani Death , 1890, The Lancet.

[70]  S. Gasser,et al.  The Importance of Satellite Sequence Repression for Genome Stability. , 2017, Cold Spring Harbor symposia on quantitative biology.