A Meta-Algorithm for Improving Top-N Prediction Efficiency of Matrix Factorization Models in Collaborative Filtering

Matrix factorization models often reveal the low-dimensional latent structure in high-dimensional spaces while bringing space efficiency to large-scale collaborative filtering problems. Improving t...

[1]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[2]  Fabio Aiolli,et al.  Efficient top-n recommendation for very large scale binary rated datasets , 2013, RecSys.

[3]  Alexandros Karatzoglou,et al.  Learning to rank for recommender systems , 2013, RecSys.

[4]  Christopher Ré,et al.  Parallel stochastic gradient algorithms for large-scale matrix completion , 2013, Mathematical Programming Computation.

[5]  João Gama,et al.  Fast Incremental Matrix Factorization for Recommendation with Positive-Only Feedback , 2014, UMAP.

[6]  Lars Schmidt-Thieme,et al.  Real-time top-n recommendation in social streams , 2012, RecSys.

[7]  Fikret S. Gürgen,et al.  Parallel pairwise learning to rank for collaborative filtering , 2019, Concurr. Comput. Pract. Exp..

[8]  Balázs Hidasi,et al.  Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback , 2012, ECML/PKDD.

[9]  Anton van den Hengel,et al.  Image-Based Recommendations on Styles and Substitutes , 2015, SIGIR.

[10]  Tevfik Aytekin,et al.  Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches , 2017, INFORMS J. Comput..

[11]  Òscar Celma,et al.  Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play in the Digital Music Space , 2010 .

[12]  Qiang Yang,et al.  One-Class Collaborative Filtering , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[13]  Rainer Gemulla,et al.  LEMP: Fast Retrieval of Large Entries in a Matrix Product , 2015, SIGMOD Conference.

[14]  William Nick Street,et al.  Collaborative filtering via euclidean embedding , 2010, RecSys '10.

[15]  Parikshit Ram,et al.  Efficient retrieval of recommendations in a matrix factorization framework , 2012, CIKM.

[16]  Dietmar Jannach,et al.  Using graded implicit feedback for bayesian personalized ranking , 2014, RecSys '14.

[17]  Mouzhi Ge,et al.  Beyond accuracy: evaluating recommender systems by coverage and serendipity , 2010, RecSys '10.

[18]  Dietmar Jannach,et al.  When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation , 2017, RecSys.

[19]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Martha Larson,et al.  CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering , 2012, RecSys.

[21]  Roberto Turrin,et al.  Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.

[22]  Ulrich Paquet,et al.  Speeding up the Xbox recommender system using a euclidean transformation for inner-product spaces , 2014, RecSys '14.

[23]  Thierry Bertin-Mahieux,et al.  The million song dataset challenge , 2012, WWW.

[24]  Weihua Ou,et al.  Robust Personalized Ranking from Implicit Feedback , 2016, Int. J. Pattern Recognit. Artif. Intell..

[25]  GamaJoão,et al.  An overview on the exploitation of time in collaborative filtering , 2015 .

[26]  Martha Larson,et al.  RecSys Challenge 2016: Job Recommendations , 2016, RecSys.

[27]  João Gama,et al.  An overview on the exploitation of time in collaborative filtering , 2015, WIREs Data Mining Knowl. Discov..

[28]  Parikshit Ram,et al.  Maximum inner-product search using cone trees , 2012, KDD.

[29]  Richard I. Hartley,et al.  Optimised KD-trees for fast image descriptor matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.