Total nitrogen influence bacterial community structure of active layer permafrost across summer and winter seasons in Ny-Ålesund, Svalbard

[1]  W. Szymański,et al.  Occurrence and stability of organic intercalation in clay minerals from permafrost-affected soils in the High Arctic – A case study from Spitsbergen (Svalbard) , 2022, Geoderma.

[2]  Mahesh Mohan,et al.  Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic , 2021, Ecological Indicators.

[3]  Guanglei Gao,et al.  Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants , 2020, PloS one.

[4]  Margareta Johansson,et al.  Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum‐Arctic , 2020, Permafrost and Periglacial Processes.

[5]  D. Schneider,et al.  Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging , 2020, mSphere.

[6]  Maja K. Sundqvist,et al.  Decomposition rate and stabilization across six tundra vegetation types exposed to >20 years of warming. , 2020, The Science of the total environment.

[7]  S. Dedysh,et al.  Linking ecology and systematics of acidobacteria: Distinct habitat preferences of the Acidobacteriia and Blastocatellia in tundra soils , 2020, PloS one.

[8]  Jizhong Zhou,et al.  Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community , 2020, Microbiome.

[9]  S. Ricci,et al.  Characterization of black patina from the Tiber River embankments using Next-Generation Sequencing , 2020, PloS one.

[10]  R. Sinha,et al.  Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard). , 2019, The Science of the total environment.

[11]  E. Jeppesen,et al.  Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients. , 2019, Environment international.

[12]  Dora Neina,et al.  The Role of Soil pH in Plant Nutrition and Soil Remediation , 2019, Applied and Environmental Soil Science.

[13]  B. Henrissat,et al.  Bacteroidetes use thousands of enzyme combinations to break down glycans , 2019, Nature Communications.

[14]  P. Čapek,et al.  Temperature response of permafrost soil carbon is attenuated by mineral protection , 2018, Global change biology.

[15]  D. Walsh,et al.  Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria , 2018, bioRxiv.

[16]  M. Langer,et al.  Permafrost Thaw and Liberation of Inorganic Nitrogen in Eastern Siberia , 2017 .

[17]  G. Rzepa,et al.  Soil formation and initial microbiological activity on a foreland of an Arctic glacier (SW Svalbard) , 2017 .

[18]  Tingting Ma,et al.  The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae , 2017, Scientific Reports.

[19]  Sukhwan Yoon,et al.  Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27 , 2017, Applied and Environmental Microbiology.

[20]  D. Lapen,et al.  Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity , 2017, Environmental microbiology.

[21]  W. Boerjan,et al.  Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees , 2017, Microbiome.

[22]  S. Dedysh,et al.  Defining the taxonomic status of described subdivision 3 Acidobacteria: proposal of Bryobacteraceae fam. nov. , 2017, International journal of systematic and evolutionary microbiology.

[23]  M. Koblížek,et al.  Phototrophic Gemmatimonadetes – a New “Purple” Branch on the Bacterial Tree of Life , 2017 .

[24]  J. Gilbert,et al.  Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’ , 2016, Nature Microbiology.

[25]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[26]  C. Lovejoy,et al.  Environmental selection of planktonic methanogens in permafrost thaw ponds , 2016, Scientific Reports.

[27]  R. Mackelprang,et al.  Permafrost Meta-Omics and Climate Change , 2016 .

[28]  G. Kowalchuk,et al.  The Ecology of Acidobacteria: Moving beyond Genes and Genomes , 2016, Front. Microbiol..

[29]  B. Elberling,et al.  Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses , 2015, Front. Microbiol..

[30]  Guido Grosse,et al.  Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps , 2014 .

[31]  P. Grogan,et al.  Vegetation-Associated Impacts on Arctic Tundra Bacterial and Microeukaryotic Communities , 2014, Applied and Environmental Microbiology.

[32]  Shunsuke Takahashi,et al.  Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing , 2014, PloS one.

[33]  A. McGuire,et al.  The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange , 2014 .

[34]  É. Yergeau,et al.  Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic , 2014, PloS one.

[35]  Kate M. Buckeridge,et al.  The seasonal pattern of soil microbial community structure in mesic low arctic tundra , 2013 .

[36]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[37]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[38]  E. Kuramae,et al.  Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. , 2013, FEMS microbiology ecology.

[39]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[40]  T. Urich,et al.  Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms , 2012, The ISME Journal.

[41]  Xiao-dong Liu,et al.  A multi‐proxy sediment record of late Holocene and recent climate change from a lake near Ny‐Ålesund, Svalbard , 2011 .

[42]  Stephan Gruber,et al.  Derivation and analysis of a high-resolution estimate of global permafrost zonation , 2011 .

[43]  W. D. de Vos,et al.  Genome Sequence of Chthoniobacter flavus Ellin428, an Aerobic Heterotrophic Soil Bacterium , 2011, Journal of bacteriology.

[44]  H. Christiansen,et al.  The “High Arctic Maritime Snow Climate” in Central Svalbard , 2011 .

[45]  J. Schimel,et al.  A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling , 2011 .

[46]  Rob Knight,et al.  Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. , 2010, Environmental microbiology.

[47]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[48]  J. Schimel,et al.  Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. , 2007, FEMS microbiology ecology.

[49]  G. Zwart,et al.  Distribution of Typical Freshwater Bacterial Groups Is Associated with pH, Temperature, and Lake Water Retention Time , 2005, Applied and Environmental Microbiology.

[50]  J. L. Sollid,et al.  Permafrost in Svalbard: a review of research history, climatic background and engineering challenges , 2003 .

[51]  I. Kiss,et al.  Microbial population in a hydrogen-dependent denitrification reactor. , 2002, Water research.

[52]  W. Liesack,et al.  Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division 'Verrucomicrobia' isolated from rice paddy soil. , 2001, International journal of systematic and evolutionary microbiology.

[53]  R. Monson,et al.  Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events , 1998, Oecologia.

[54]  J. Schimel,et al.  Microbial response to freeze-thaw cycles in tundra and taiga soils , 1996 .