Size-scaling in optical trapping of silicon nanowires.

We investigate size-scaling in optical trapping of ultrathin silicon nanowires showing how length regulates their Brownian dynamics, optical forces, and torques. Force and torque constants are measured on nanowires of different lengths through correlation function analysis of their tracking signals. Results are compared with a full electromagnetic theory of optical trapping developed in the transition matrix framework, finding good agreement.

[1]  Moreno Meneghetti,et al.  Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids , 2011 .

[2]  José García de la Torre,et al.  Comparison of theories for the translational and rotational diffusion coefficients of rod‐like macromolecules. Application to short DNA fragments , 1984 .

[3]  M. N. Shneider,et al.  Cavity cooling of an optically trapped nanoparticle , 2009, 0910.1221.

[4]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[5]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[6]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[7]  D. Grier A revolution in optical manipulation , 2003, Nature.

[8]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[9]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[10]  Yael Roichman,et al.  Manipulation and assembly of nanowires with holographic optical traps. , 2005, Optics express.

[11]  G. Volpe,et al.  Torque detection using Brownian fluctuations. , 2006, Physical review letters.

[12]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[13]  Y. Sheng,et al.  Angular and position stability of a nanorod trapped in an optical tweezers. , 2010, Optics express.

[14]  S. Simpson,et al.  Erratum: First-order nonconservative motion of optically trapped nonspherical particles [Phys. Rev. E82, 031141 (2010)] , 2010 .

[15]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[16]  Fan Wang,et al.  Characterization of semiconductor nanowires using optical tweezers. , 2011, Nano letters.

[17]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[18]  Halina Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  D B Phillips,et al.  Download details: IP Address: 137.222.59.47 , 2011 .

[20]  P. Denti,et al.  Optical trapping of nonspherical particles in the T-matrix formalism. , 2007, Optics express.

[21]  Rosalba Saija,et al.  Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .

[22]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[23]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[24]  Wei Lu,et al.  Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. , 2009, Nano letters.

[25]  M J Padgett,et al.  Calibration of optically trapped nanotools , 2010, Nanotechnology.

[26]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[27]  K. Thelander A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires , 2008 .

[28]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[29]  Andrew C. Richardson,et al.  Three-dimensional optical control of individual quantum dots. , 2008, Nano letters.

[30]  Chun-Sing Lee,et al.  Silicon nanowires as chemical sensors , 2003 .

[31]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[32]  R. Saija,et al.  Fano-Doppler laser cooling of hybrid nanostructures. , 2011, ACS nano.

[33]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .

[34]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[35]  Peter J. Pauzauskie,et al.  Optical trapping and integration of semiconductor nanowire assemblies in water , 2006, Nature materials.

[36]  T. Powers Dynamics of filaments and membranes in a viscous fluid , 2009, 0912.1431.

[37]  R. Di Leonardo,et al.  Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micron-scale rods. , 2011, Physical review letters.

[38]  A. Radenović,et al.  Nonlinear optical response in single alkaline niobate nanowires. , 2011, Nano letters.

[39]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[40]  Hans L. Pecseli,et al.  Fluctuations in Physical Systems , 2000 .

[41]  Edward L. Wolf,et al.  Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience , 2004 .