B-spline estimation for varying coefficient regression with spatial data
暂无分享,去创建一个
[1] L. Tran. Kernel density estimation on random fields , 1990 .
[2] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[3] Zudi Lu,et al. Spatial Nonparametric Regression Estimation: Non-isotropic Case , 2002 .
[4] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[5] Y. Ogata. Evaluation of spatial Bayesian models—Two computational methods☆ , 1996 .
[6] M. Hallin,et al. Local linear spatial regression , 2004, math/0508597.
[7] Gutti Jogesh Babu,et al. Spatial point processes in astronomy , 1996 .
[8] Jinde Wang,et al. L 1-estimation for varying coefficient models , 2005 .
[9] Tang Qingguo,et al. Reducing component estimation for varying coefficient models with longitudinal data , 2008 .
[10] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[11] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[12] Marc Hallin,et al. Density estimation for spatial linear processes , 2001 .
[13] W. J. Studden,et al. Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines , 1980 .
[14] Xavier Guyon,et al. Random fields on a network , 1995 .
[15] Jinde Wang,et al. One-step estimation for varying coefficient models , 2005 .
[16] Zudi Lu,et al. Spatial kernel regression estimation: weak consistency. , 2004 .
[17] S. Yakowitz,et al. Nearest neighbor estimators for random fields , 1993 .
[18] Jiti Gao,et al. Estimation in semiparametric spatial regression , 2003 .
[19] Philip Smith,et al. Asymptotic properties of best ₂[0,1] approximation by splines with variable knots , 1978 .
[20] Jianqing Fan,et al. Statistical Estimation in Varying-Coefficient Models , 1999 .
[21] Arvid Lundervold,et al. Exploring spatial nonlinearity using additive approximation , 2007 .
[22] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.