Plasmonic Modulators for Microwave Photonics Applications

We discuss the potential of ultrafast (>170 GHz) and ultra-compact (10s pm2) plasmonic modulators on silicon for microwave photonics applications, with emphasis on mm-wave and sub-THz wireless communications and signal processing.

[1]  Idelfonso Tafur Monroy,et al.  Photonic downconversion and optically controlled reconfigurable antennas in mm-waves wireless networks , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[2]  Jun Terada,et al.  Terahertz wireless communications based on photonics technologies. , 2013, Optics express.

[3]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[4]  Juerg Leuthold,et al.  Microwave plasmonics: A novel platform for RF photonics , 2016, 2016 IEEE International Topical Meeting on Microwave Photonics (MWP).

[5]  M. Burla,et al.  Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves. , 2016, Optics express.

[6]  Juerg Leuthold,et al.  Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators , 2017 .

[7]  J. Schildkraut Long-range surface plasmon electrooptic modulator. , 1988, Applied optics.

[8]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[9]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[10]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[11]  Wolfgang Freude,et al.  Silicon–Organic and Plasmonic–Organic Hybrid Photonics , 2017 .

[12]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[13]  Yang Liu,et al.  Highly selective and reconfigurable Si3N4 RF photonic notch filter with negligible RF losses , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[14]  Rodney Waterhouse,et al.  Realizing 5G: Microwave Photonics for 5G Mobile Wireless Systems , 2015, IEEE Microwave Magazine.

[15]  Ioannis Tomkos,et al.  Plasmonic communications : light on a wire , 2013 .

[16]  David Hillerkuss,et al.  Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna , 2015, Nano letters.

[17]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[18]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[19]  Juerg Leuthold,et al.  Ultra-Fast Millimeter Wave Beam Steering , 2016, IEEE Journal of Quantum Electronics.

[20]  D. Hillerkuss,et al.  Optical Interconnect Solution With Plasmonic Modulator and Ge Photodetector Array , 2017, IEEE Photonics Technology Letters.

[21]  T. Zwick,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[22]  C. Hafner,et al.  Electrically Controlled Plasmonic Switches and Modulators , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  José Capmany,et al.  Integrated microwave photonics , 2019, Nature Photonics.

[24]  José Capmany,et al.  Microwave photonics combines two worlds , 2007 .

[25]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[26]  Ruimin Xu,et al.  Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores , 2016 .