Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion

[1]  A. Emeline,et al.  Semiconductor Photocatalysis - Past, Present, and Future Outlook. , 2012, The journal of physical chemistry letters.

[2]  Prashant V Kamat,et al.  Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. , 2012, Journal of the American Chemical Society.

[3]  Qing Wang,et al.  Dependence of Dye-Sensitized Solar Cell Impedance on Photoelectrode Thickness , 2012 .

[4]  A. Tok,et al.  Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. , 2012, Small.

[5]  S. Bent,et al.  Atomic Layer Deposition of CdS Quantum Dots for Solid‐State Quantum Dot Sensitized Solar Cells , 2011 .

[6]  Xue Chen,et al.  Arrays of ZnO/Zn(x)Cd(1-x)Se nanocables: band gap engineering and photovoltaic applications. , 2011, Nano letters.

[7]  Jinyao Tang,et al.  Solution-processed core-shell nanowires for efficient photovoltaic cells. , 2011, Nature nanotechnology.

[8]  Qing Wang,et al.  Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. , 2011, ACS nano.

[9]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[10]  Juan Bisquert,et al.  Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells , 2010 .

[11]  Jiwon Bang,et al.  Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes , 2010 .

[12]  David F. Watson Linker-Assisted Assembly and Interfacial Electron-Transfer Reactivity of Quantum Dot−Substrate Architectures , 2010 .

[13]  G. Jung,et al.  Composition-tuned ZnO--CdSSe core--shell nanowire arrays. , 2010, ACS nano.

[14]  F. Fabregat‐Santiago,et al.  Recombination in Quantum Dot Sensitized Solar Cells , 2010 .

[15]  Yuh‐Lang Lee,et al.  CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell† , 2010 .

[16]  Michael Grätzel,et al.  Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. , 2009, Nano letters.

[17]  Tae Geun Kim,et al.  Growth of CdS Nanorod-Coated TiO2 Nanowires on Conductive Glass for Photovoltaic Applications , 2009 .

[18]  M. Zacharias,et al.  ZnO-based ternary compound nanotubes and nanowires , 2009 .

[19]  Prajna P. Das,et al.  Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS , 2008 .

[20]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[21]  Yuh‐Lang Lee,et al.  Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells , 2007 .

[22]  Lin-Wang Wang,et al.  Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange , 2007, Science.

[23]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[24]  D. Cahen,et al.  Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells , 2006 .

[25]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[26]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[27]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[28]  Makoto Konagai,et al.  Atomic layer deposition of ZnO transparent conducting oxides , 1997 .

[29]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[30]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[31]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[32]  A. Tok,et al.  TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications , 2011 .

[33]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[34]  M. Steigerwald,et al.  Controlled Electrophoretic Deposition of Smooth and Robust Films of CdSe Nanocrystals , 2004 .

[35]  Nick Serpone,et al.  Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer , 1984 .