A 3–5GHz frequency tunable ultra wideband LNA for OFDM applications

In this paper, a frequency tunable differential input differential output Low Noise Amplifier (LNA), used for 3–5GHz OFDM applications, is proposed and analyzed. The LNA has a wideband input matching and a tunable output matching. The digital controlled capacitor arrays in the output matching networks allow the LNA to be switched smoothly in the frequency range of 3 to 5GHz with output return loss less than −15dB. The overall LNA is designed with TSMC 0.18 µm technology, and the simulation result shows that the input return loss is less than −12dB and the noise figure is less than 4.5dB in desired frequency range. At 3.3V power supply, the LNA achieves an 8–12dB transducer gain in the frequency range with the power consumption of only 20mW.

[1]  Kuo-Liang Deng,et al.  A 0.6-22-GHz broadband CMOS distributed amplifier , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[2]  Huey-Ru Chuang,et al.  0.18 μm 3-6 GHz CMOS broadband LNA for UWB radio , 2005 .

[3]  John H. Wuorinen 1993 IEEE International Solid-State Circuits Conference : digest of technical papers , 1993 .

[4]  Shen-Iuan Liu,et al.  A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers , 2007, IEEE Journal of Solid-State Circuits.

[5]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[6]  N.M. Noh,et al.  Study and analysis of a 0.18 μm single-ended inductively-degenerated common-source cascode LNA under post-layout corner conditions , 2007, 2007 International Conference on Intelligent and Advanced Systems.

[7]  Sang-Sun Yoo,et al.  Optimazation of Switchable Inductor and Application to Reconfigurable LNA with Self-matched Capacitor , 2007, 2007 Asia-Pacific Microwave Conference.

[8]  Ranjit Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13 μm CMOS , 2004, CICC.

[9]  Tina Quach,et al.  Radio Frequency Integrated Circuits (RFIC) Symposium , 2005, Radio Frequency Integrated Circuits Symposium.

[10]  Yann Deval,et al.  IEEE Radio Frequency Integrated Circuits Symposium (RFIC) to Open Microwave Week 2008 in Atlanta , 2008 .

[11]  M. Ismail,et al.  A new RF front-end and frequency synthesizer architecture for 3.1-10.6 GHz MB-OFDM UWB receivers , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[12]  A. Bevilacqua,et al.  An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[13]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[14]  Anuj Batra,et al.  Multi-band OFDM: a new approach for UWB , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[15]  S.K. Wilson,et al.  Synchronization of a TDMA-OFDM frequency hopping system , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[16]  Yu-Jiu Wang,et al.  A 6-to-18 GHz tunable concurrent dual-band receiver front end for scalable phased arrays in 130nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[17]  K. Masu,et al.  Reconfigurable CMOS LNA for software defined radio using variable inductor , 2005, 2005 European Microwave Conference.

[18]  R. Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[19]  K. Taniguchi,et al.  A 1.0 V, 2.5 mW, transformer noise-canceling UWB CMOS LNA , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[20]  Anuj Batra,et al.  A multi-band OFDM system for UWB communication , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[21]  Wyndham Baltimore,et al.  2002 IEEE Conference on Ultra Wideband Systems and Technologies , 2002 .