A Note on Determinig the 3-Dimensional Convex Hull of a Set of Points on a Mesh of Processors
暂无分享,去创建一个
[1] Jeffrey D Ullma. Computational Aspects of VLSI , 1984 .
[2] Chee-Keng Yap. What Can be Parallelized in Computational Geometry? , 1987, Parallel Algorithms and Architectures.
[3] Jörg-Rüdiger Sack,et al. A survey of paralle computational geometry algorithms , 1988, Parcella.
[4] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[5] Mi Lu. Constructing the Voronoi Diagram on a Mesh-Connected Computer , 1986, ICPP.
[6] Leonidas J. Guibas,et al. Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[7] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[8] Mikhail J. Atallah,et al. Solving tree problems on a mesh-connected processor array , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[9] Russ Miller,et al. Mesh Computer Algorithms for Computational Geometry , 1989, IEEE Trans. Computers.
[10] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[11] H. T. Kung,et al. Sorting on a mesh-connected parallel computer , 1977, CACM.
[12] Russ Miller,et al. COMPUTATIONAL GEOMETRY ON A MESH-CONNECTED COMPUTER. , 1984 .
[13] F. P. Preparata,et al. Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.
[14] David G. Kirkpatrick,et al. Parallel Construction of Subdivision Hierarchies , 1989, J. Comput. Syst. Sci..