Probing for electrical inclusions with complex spherical waves

Let a physical body Ω in ℝ2 or ℝ3 be given. Assume that the electric conductivity distribution inside Ω consists of conductive inclusions in a known smooth background. Further, assume that a subset Γ ⊂ ∂Ω is available for boundary measurements. It is proved using hyperbolic geometry that certain information about the location of the inclusions can be exactly recovered from static electric measurements on Γ. More precisely: given a ball B with center outside the convex hull of Ω and satisfying (B ∩ ∂Ω) ⊂ Γ, boundary measurements on Γ with explicitly given Dirichlet data are enough to determine whether B intersects the inclusion. An approximate detection algorithm is introduced based on the theory. Numerical experiments in dimension two with simulated noisy data suggest that the algorithm finds the inclusion-free domain near Γ and is robust against measurement noise. © 2007 Wiley Periodicals, Inc.

[1]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[2]  David Barber,et al.  Three dimensional electrical impedance tomography of the human thorax , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Masaru IKEHATA,et al.  Mittag-Leffler’s function and extracting from Cauchy data , 2003 .

[4]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[5]  M. Hanke,et al.  Numerical implementation of two noniterative methods for locating inclusions by impedance tomography , 2000 .

[6]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[7]  Zhenyu Guo,et al.  A review of electrical impedance techniques for breast cancer detection. , 2003, Medical engineering & physics.

[8]  J Jossinet,et al.  The impedivity of freshly excised human breast tissue , 1998, Physiological measurement.

[9]  Ohin Kwon,et al.  T-Scan Electrical Impedance Imaging System for Anomaly Detection , 2004, SIAM J. Appl. Math..

[10]  Masaru Ikehata,et al.  Reconstruction of inclusion from boundary measurements , 2018, 1803.02937.

[11]  A. Binley,et al.  Detection of leaks in underground storage tanks using electrical resistance methods. , 1996 .

[12]  Samuli Siltanen,et al.  Electrical impedance tomography and Mittag-Leffler's function , 2004 .

[13]  Masaru Ikehata,et al.  RECONSTRUCTION OF THE SHAPE OF THE INCLUSION BY BOUNDARY MEASUREMENTS , 1998 .

[14]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[15]  G. Uhlmann,et al.  The Calderón problem with partial data , 2004 .

[16]  J C Newell,et al.  Real-time three-dimensional electrical impedance imaging. , 2000, Physiological measurement.

[17]  Ramon Pallas-Areny,et al.  Electrical resistance tomography to detect leaks from buried pipes , 2001 .

[18]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[19]  Michael Vogelius,et al.  A direct impedance tomography algorithm for locating small inhomogeneities , 2003, Numerische Mathematik.

[20]  D. Isaacson,et al.  A reconstruction algorithm for electrical impedance tomography data collected on rectangular electrode arrays , 1999, IEEE Transactions on Biomedical Engineering.

[21]  On reconstruction from a partial knowledge of the Neumann-to-Dirichlet operator , 2001, 1902.05186.

[22]  Masaru Ikehata,et al.  On reconstruction in the inverse conductivity problem with one measurement , 2000, 1902.05182.

[23]  J. Leblond,et al.  Recovery of pointwise sources or small inclusions in 2D domains and rational approximation , 2005 .

[24]  Nuutti Hyvönen,et al.  Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions , 2004, SIAM J. Appl. Math..

[25]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[26]  Roland Potthast,et al.  The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering , 2003 .

[27]  Avner Friedman,et al.  On the Uniqueness in the Inverse Conductivity Problem with One Measurement , 1988 .

[28]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[29]  Masaru Ikehata,et al.  Size estimation of inclusion , 1998 .

[30]  Ohin Kwon,et al.  Estimation of anomaly location and size using electrical impedance tomography , 2003, IEEE Trans. Biomed. Eng..

[31]  Ohin Kwon,et al.  Total size estimation and identification of multiple anomalies in the inverse conductivity problem , 2001 .

[32]  H. Isozaki The ∂-theory for inverse problems associated with schrödinger operators on hyperbolic spaces , 2007 .

[33]  Jin Keun Seo,et al.  Inverse Conductivity Problem with One Measurement: Uniqueness of Balls in ℝ3 , 1999, SIAM J. Appl. Math..

[34]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[35]  Habib Ammari,et al.  Reconstruction of the potential from partial Cauchy data for the Schroedinger equation , 2004 .

[36]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[37]  Takashi Ohe,et al.  A numerical method for finding the convex hull of polygonal cavities using the enclosure method , 2002 .

[38]  Ohin Kwon,et al.  A real time algorithm for the location search of discontinuous conductivities with one measurement , 2002 .

[39]  Douglas LaBrecque,et al.  Monitoring an underground steam injection process using electrical resistance tomography , 1993 .

[40]  Samuli Siltanen,et al.  Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements , 2000 .

[41]  William Robert Breckon Image reconstruction in electrical impedance tomography , 1990 .

[43]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[44]  Gunther Uhlmann,et al.  Hyperbolic geometry and local Dirichlet–Neumann map , 2004 .

[45]  Victor Isakov,et al.  On uniqueness of recovery of a discontinuous conductivity coefficient , 1988 .

[46]  Masaru Ikehata,et al.  Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data , 1999 .

[47]  Michael Vogelius,et al.  Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .

[48]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[49]  Masaru Ikehata,et al.  Reconstruction of the support function for inclusion from boundary measurements , 2000 .

[50]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[51]  Jin Keun Seo,et al.  The inverse conductivity problem with one measurement: stability and estimation of size , 1997 .

[52]  A. Binley,et al.  Cross-hole electrical imaging of a controlled saline tracer injection , 2000 .

[53]  K. Kunisch,et al.  Level-set function approach to an inverse interface problem , 2001 .

[54]  Stephen P. Brooks,et al.  A Bayesian approach to crack detection in electrically conducting media , 2001 .

[55]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[56]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[57]  Liliana Borcea,et al.  Addendum to 'Electrical impedance tomography' , 2003 .

[58]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[59]  Gen Nakamura,et al.  Numerical Recovery of Conductivity at the Boundary from the Localized Dirichlet to Neumann Map , 2004, Computing.

[60]  Guillaume Bal Reconstructions in impedance and optical tomography with singular interfaces , 2005 .

[61]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.