Prognosis and Multiobjective Optimization of the Sampling Plan for Cylindricity Evaluation

The actualization of the befitting sampling strategy and the application of an appropriate evaluation algorithm have been elementary issues in the coordinate metrology. The decisions regarding their choice for a given geometrical feature customarily rely upon the user’s instinct or experience. As a consequence, the measurement results have to be accommodated between the accuracy and the inspection time. Certainly, a reliable and efficient sampling plan is imperative to accomplish a dependable inspection in minimal time, effort, and cost. This paper deals with the determination of an optimal sampling plan that minimizes the inspection cost, while still promising a measurement quality. A cylindrical-shaped component has been utilized in this work to achieve the desired objective. The inspection quality of the cylinder using a coordinate measuring machine (CMM) can be enhanced by controlling the three main parameters, which are used as input variables in the data file, namely, point distribution schemes, total number of points, and form evaluation algorithms. These factors affect the inspection output, in terms of cylindricity and measurement time, which are considered as target variables. The dataset, which comprises input and intended parameters, has been acquired through experimentation on the CMM machine. This work has utilized state-of-the-art machine learning algorithms to establish predictive models, which can predict the inspection output. The different algorithms have been examined and compared to seek for the most relevant machine learning regression method. The best performance has been observed using the support vector regression for cylindricity, with a mean absolute error of 0.000508 mm and a root-mean-squared error of 0.000885 mm. Likewise, the best prediction performance for measuring time has been demonstrated by the decision trees. Finally, the optimal parameters are estimated by employing the grey relational analysis (GRA) and the fuzzy technique for order performance by similarity to ideal solution (FTOPSIS). It has been approved that the values obtained from GRA are comparable with those of the FTOPSIS. Moreover, the quality of the optimal results is bettered by incorporating the measurement uncertainty in the outcome.

[1]  Bernard C. Jiang,et al.  Form tolerance-based measurement points determination with CMM , 2002, J. Intell. Manuf..

[2]  S. K. Goyal,et al.  A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty , 2011, Math. Comput. Model..

[3]  Hsi-Yung Feng,et al.  A roundness evaluation algorithm with reduced fitting uncertainty of CMM measurement data , 2006 .

[4]  Yin-Lin Shen,et al.  Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine , 1997 .

[5]  T. G. King,et al.  Factors which influence CMM touch trigger probe performance , 1998 .

[6]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[7]  Kalle Lyytinen,et al.  Identifying Software Project Risks: An International Delphi Study , 2001, J. Manag. Inf. Syst..

[8]  Leonardo De Chiffre,et al.  Uncertainty analysis of point-by-point sampling complex surfaces using touch probe CMMs DOE for complex surfaces verification with CMM , 2010 .

[9]  Martin Halaj,et al.  Uncertainty and its Impact on the Quality of Measurement , 2012 .

[10]  Saeid Motavalli,et al.  A unified approach to form error evaluation , 2002 .

[11]  J. M. Baldwin,et al.  Application of Simulation Software to Coordinate Measurement Uncertainty Evaluations , 2007 .

[12]  Miran Brezocnik,et al.  A comparison of machine learning methods for cutting parameters prediction in high speed turning process , 2016, Journal of Intelligent Manufacturing.

[13]  Pınar Tüfekci,et al.  Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods , 2014 .

[14]  H. Weber,et al.  Functionality-oriented evaluation and sampling strategy in coordinate metrology , 1995 .

[15]  Yao Zhenqiang,et al.  Cylindricity modeling and tolerance analysis for cylindrical components , 2013 .

[16]  Marek Dobosz,et al.  Metrological feasibilities of CMM touch trigger probes. Part I: 3D theoretical model of probe pretravel , 2003 .

[17]  Chen-Tung Chen,et al.  Extensions of the TOPSIS for group decision-making under fuzzy environment , 2000, Fuzzy Sets Syst..

[18]  Gary C. Lin,et al.  Design and analysis of experiments in CMM measurement uncertainty study , 2007 .

[19]  Mao-Jiun J. Wang,et al.  A fuzzy multi-criteria decision-making method for facility site selection , 1991 .

[20]  Oleksandr Semeniuta,et al.  Optimization of Process Parameters for Powder Bed Fusion Additive Manufacturing by Combination of Machine Learning and Finite Element Method: A Conceptual Framework , 2018 .

[21]  Chen-Tung Chen,et al.  A fuzzy approach for supplier evaluation and selection in supply chain management , 2006 .

[22]  Lifeng Wu,et al.  Grey convex relational degree and its application to evaluate regional economic sustainability , 2012 .

[23]  Connor Jennings,et al.  Cloud-Based Parallel Machine Learning for Tool Wear Prediction , 2018 .

[24]  Hsin-Hung Wu,et al.  A Comparative Study of Using Grey Relational Analysis in Multiple Attribute Decision Making Problems , 2002 .

[25]  Antonio Piratelli-Filho,et al.  CMM uncertainty analysis with factorial design , 2003 .

[26]  Gil-Sang Yoon,et al.  A computer-aided inspection planning system for on-machine measurement — part I: Global inspection planning — , 2004 .

[27]  Syed Hammad Mian,et al.  The influence of surface topology on the quality of the point cloud data acquired with laser line scanning probe , 2014 .

[28]  Z. Jane Wang,et al.  Machine learning for quality prediction in abrasion-resistant material manufacturing process , 2016, 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE).

[29]  Gianfranco Genta,et al.  Measurement uncertainty assessment of Coordinate Measuring Machines by simulation and planned experimentation , 2011 .

[30]  Yingjie Zhang,et al.  Adaptive sampling method for inspection planning on CMM for free-form surfaces , 2013 .

[31]  A. Weckenmann,et al.  The Influence of Measurement Strategy on the Uncertainty of CMM-Measurements , 1998 .

[32]  Michele Lanzetta,et al.  Optimal blind sampling strategy for minimum zone roundness evaluation by metaheuristics , 2013 .

[33]  Ahmad Barari,et al.  Effect of sampling strategy on uncertainty and precision of flatness inspection studied by dynamic minimum deviation zone evaluation , 2013 .

[34]  Moroni Giovanni,et al.  Statistical Sampling Strategies for Geometric Tolerance Inspection by CMM , 2008 .

[35]  Giovanni Moroni,et al.  Coordinate Measuring Machine Measurement Planning , 2011 .

[36]  K. J. Stout,et al.  The influence of sampling strategy on a circular feature in coordinate measurements , 1996 .

[37]  Jerzy A. Sładek,et al.  Measurement Uncertainty and Requirements of Production System. Selected Issues of Measurement Uncertainty Theory , 2016 .

[38]  Miroslav Dovica,et al.  Method Comparison of the Evaluation of the Cylindricity Deviation Measured by Different Measurement Strategies , 2013 .

[39]  Taho Yang,et al.  The use of grey relational analysis in solving multiple attribute decision-making problems , 2008, Comput. Ind. Eng..

[40]  R. Wilhelm,et al.  Adaptive sampling for coordinate metrology , 1999 .

[41]  Zhixiong Li,et al.  Prediction of surface roughness in extrusion-based additive manufacturing with machine learning , 2019, Robotics and Computer-Integrated Manufacturing.

[42]  D. Cox The Regression Analysis of Binary Sequences , 1958 .

[43]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[44]  Hoda A. ElMaraghy,et al.  Automatic sampling for CMM inspection planning of free-form surfaces , 2002 .

[45]  Connor Jennings,et al.  A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests , 2017 .

[46]  Giovanni Moroni,et al.  Inspection Strategies and Multiple Geometric Tolerances , 2013 .

[47]  Mahmoud O. Elish A comparative study of fault density prediction in aspect-oriented systems using MLP, RBF, KNN, RT, DENFIS and SVR models , 2014, Artificial Intelligence Review.

[48]  Xianqing Lei,et al.  Method for cylindricity error evaluation using Geometry Optimization Searching Algorithm , 2011 .

[49]  Giovanni Moroni,et al.  Geometric tolerance evaluation: A discussion on minimum zone fitting algorithms , 2008 .

[50]  N. C. Hwang,et al.  Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling , 2009 .

[51]  Alaa Elwany,et al.  Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models , 2016 .

[52]  Paul G. Maropoulos,et al.  An Exploration into Measurement Consistency on Coordinate Measuring Machines , 2014 .

[53]  Mooyoung Jung,et al.  Integrated precision inspection system for manufacturing of moulds having CAD defined features , 1995 .

[54]  Klaus-Dieter Thoben,et al.  Machine learning in manufacturing: advantages, challenges, and applications , 2016 .

[55]  Vishal S. Sharma,et al.  Multi-Objective Optimization using Grey Relational Taguchi Analysis in Machining: Grey Relational Taguchi Analysis , 2016, Int. J. Organ. Collect. Intell..

[56]  Divya Tomar,et al.  Twin Support Vector Machine: A review from 2007 to 2014 , 2015 .

[57]  Katharina Morik,et al.  Stability prediction in milling processes using a simulation-based Machine Learning approach , 2018 .

[58]  Gil-Sang Yoon,et al.  A feature-based inspection planning system for coordinate measuring machines , 2005 .

[59]  P. Pedone,et al.  Designing small samples for form error estimation with coordinate measuring machines , 2011 .

[60]  H. Altay Güvenir,et al.  Regression on feature projections , 2000, Knowl. Based Syst..

[61]  Sorin Nadaban,et al.  Fuzzy TOPSIS: A General View , 2016 .

[62]  Jörg Franke,et al.  Conceptual design of an intelligent ultrasonic crimping process using machine learning algorithms , 2018 .

[63]  Steve Wiseall,et al.  Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components , 2016 .

[64]  Shivakumar Raman,et al.  Intelligent Search-Based Selection of Sample Points for Straightness and Flatness Estimation , 2003 .

[65]  T. Kurfess,et al.  Sampling uncertainty in coordinate measurement data analysis , 1998 .

[66]  A. Meo,et al.  Optimum Dataset Size and Search Space for Minimum Zone Roundness Evaluation by Genetic Algorithm , 2013 .

[67]  A. N. M. Khalil,et al.  Grey Relational Analyses for Multi-Objective Optimization of Turning S45C Carbon Steel , 2016 .

[68]  Matthias Ketzel,et al.  A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. , 2019, Environment international.

[69]  Ali H. Diabat,et al.  A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain with linguistic preferences , 2013 .

[70]  Wen-Shing Lee,et al.  Evaluating and ranking energy performance of office buildings using Grey relational analysis , 2011 .

[71]  Rosenda Valdés Arencibia,et al.  Simplified model to estimate uncertainty in CMM , 2015 .

[72]  Svetan Ratchev,et al.  In-process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis , 2018 .

[73]  Mehmet Fatih Amasyali,et al.  A comparative review of regression ensembles on drug design datasets , 2013, Turkish Journal of Electrical Engineering and Computer Sciences.

[74]  A. Weckenmann,et al.  Uncertainty of coordinate measurements on sheet-metal parts in the automotive industry , 2001 .

[75]  Sonko Osawa,et al.  Multiple orientation technique for the calibration of cylindrical workpieces on CMMs , 2005 .

[76]  D. Mishra,et al.  Multi objective optimization of EDM process parameters using fuzzy TOPSIS method , 2015, 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS).

[77]  Hong-Tzong Yau,et al.  Automated precision measurement of surface profile in CAD-directed inspection , 1992, IEEE Trans. Robotics Autom..