A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications

A new wideband receiver architecture is proposed that employs two separate passive-mixer-based downconversion paths, which enables noise cancelling, but avoids voltage gain at blocker frequencies. This approach significantly relaxes the trade-off between noise, out-of-band linearity and wideband operation. The resulting prototype in 40 nm is functional from 80 MHz to 2.7 GHz and achieves a 2 dB noise figure, which only degrades to 4.1 dB in the presence of a 0 dBm blocker.

[1]  Rinaldo Castello,et al.  A 15 mW, 70 kHz 1/f corner direct conversion CMOS receiver , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[2]  N. A. Moseley,et al.  Digitally Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference , 2009, IEEE Journal of Solid-State Circuits.

[3]  Jonathan Borremans,et al.  6 A 40 nm CMOS Highly Linear 0 . 4to-6 GHz Receiver Resilient to 0 dBm Out-of-Band Blockers , 2011 .

[4]  Ali M. Niknejad,et al.  A 1.5-V 0.7–2.5-GHz CMOS Quadrature Demodulator for Multiband Direct-Conversion Receivers , 2007, IEEE Journal of Solid-State Circuits.

[5]  E. Klumperink,et al.  Noise cancelling in wideband CMOS LNAs , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[6]  Eric A. M. Klumperink,et al.  A software-defined radio receiver architecture robust to out-of-band interference , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[7]  Caroline Andrews,et al.  A passive-mixer-first receiver with baseband-controlled RF impedance matching, ≪ 6dB NF, and ≫ 27dBm wideband IIP3 , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[8]  Eric A. M. Klumperink,et al.  A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving ≫11dBm IIP3 and ≪6.5 dB NF , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Ilku Nam,et al.  A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner , 2009, IEEE J. Solid State Circuits.

[10]  H. Melchior,et al.  An integrated CMOS switched-capacitor bandpass filter based on N-path and frequency-sampling principles , 1983, IEEE Journal of Solid-State Circuits.

[11]  Alyosha C. Molnar,et al.  A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface , 2010, IEEE Journal of Solid-State Circuits.

[12]  Li Lin,et al.  A 1.75 GHz highly-integrated narrow-band CMOS transmitter with harmonic-rejection mixers , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[13]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[14]  H. Darabi,et al.  A 65nm CMOS quad-band SAW-less receiver for GSM/GPRS/EDGE , 2010, 2010 Symposium on VLSI Circuits.

[15]  Ahmad Mirzaei,et al.  A blocker-tolerant wideband noise-cancelling receiver with a 2dB noise figure , 2012, 2012 IEEE International Solid-State Circuits Conference.

[16]  Bram Nauta,et al.  A CMOS transconductance-C filter technique for very high frequencies , 1992 .

[17]  Jonathan Borremans,et al.  A 40 nm CMOS 0.4–6 GHz Receiver Resilient to Out-of-Band Blockers , 2011, IEEE Journal of Solid-State Circuits.

[18]  Ahmad Mirzaei,et al.  Architectural Evolution of Integrated M-Phase High-Q Bandpass Filters , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[20]  Hsiang-Hui Chang,et al.  A SAW-Less GSM/GPRS/EDGE Receiver Embedded in 65-nm SoC , 2011, IEEE Journal of Solid-State Circuits.

[21]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[22]  Ahmad Mirzaei,et al.  A 65 nm CMOS Quad-Band SAW-Less Receiver SoC for GSM/GPRS/EDGE , 2011, IEEE Journal of Solid-State Circuits.

[23]  George Chien,et al.  A SAW-less GSM/GPRS/EDGE receiver embedded in a 65nm CMOS SoC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[24]  I. W. Sandberg,et al.  An alternative approach to the realization of network transfer functions: The N-path filter , 1960 .

[25]  George A. Campbell,et al.  Maximum Output Networks for Telephone Substation and Repeater Circuits , 1920, Transactions of the American Institute of Electrical Engineers.

[26]  David Patrick Murphy,et al.  Noise in Large-Signal, Time-Varying RF CMOS Circuits: Theory & Design , 2012 .

[27]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[28]  Zhiyu Ru,et al.  Frequency translation techniques for interference-robust software-defined radio receivers , 2009 .

[29]  Eric A. M. Klumperink,et al.  A Wideband Balun LNA I/Q-Mixer combination in 65nm CMOS , 2008, ISSCC.

[30]  Alyosha C. Molnar,et al.  Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Ahmad Mirzaei,et al.  Noise in Current-Commutating Passive FET Mixers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Ahmad Mirzaei,et al.  Analysis of Direct-Conversion IQ Transmitters With 25% Duty-Cycle Passive Mixers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[33]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  M.-C.F. Chang,et al.  A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver , 2005, IEEE Journal of Solid-State Circuits.