The underground cavity network of south-eastern Rome (Italy): an evolutionary geological model oriented to hazard assessment

There are many abandoned underground mines beneath the city of Rome, created in the Pleistocene pyroclastic deposits over thousands of years. These pose a serious public safety risk hence the study was undertaken to better assess the stability of the underground workings. The Villa de Sanctis public park was selected as a suitable test site, as in this area the cavity network can be inspected and the different steps of the progressive migration of voids toward the surface can be identified. In addition to an underground geological survey, geophysical investigations were undertaken to elucidate some key characteristics of the involved lithological units, including elastic stiffness and layer thickness. Recommendations are made for further studies of the accessible and inaccessible areas.RésuméIl y a, sous la ville de Rome, de nombreuses carrières souterraines abandonnées, excavées depuis des milliers d’années dans les dépôts pyroclastiques du Pléistocène. Elles représentent un risque sérieux pour la sécurité publique justifiant cette étude destinée à évaluer la stabilité de ces travaux souterrains. Le parc public de La Villa de Sanctis a été choisi comme site test car, dans ce secteur, le réseau de cavités peut être inspecté et les différentes étapes de migration progressive de vides vers la surface peuvent être identifiées. En plus d’une reconnaissance géologique souterraine, des investigations géophysiques ont été réalisées afin d’identifier quelques caractéristiques clés des unités géologiques, incluant les raideurs élastiques et les épaisseurs des couches.

[1]  E. Cardarelli,et al.  Electrical resistivity tomography to detect buried cavities in Rome: a case study , 2006 .

[2]  David G. Price,et al.  Strategies to assess the hazards presented by abandoned room and pillar mines , 1995 .

[3]  P. Renne,et al.  Large mafic eruptions at Alban Hills Volcanic District (Central Italy): Chronostratigraphy, petrography and eruptive behavior , 2009 .

[4]  A. Waltham Crown hole development in the sandstone caves of Nottingham , 1993, Quarterly Journal of Engineering Geology.

[5]  M. Cecconi,et al.  Geotechnical properties of an unsaturated pyroclastic soil from Roma , 2007 .

[6]  M. Jackson,et al.  Roman Stone Masonry: Volcanic Foundations of the Ancient City , 2006, American Journal of Archaeology.

[7]  M. Cecconi,et al.  On the geology and the geotechnical properties of pyroclastic flow deposits of the Colli Albani , 2010 .

[8]  Silvio Mollo,et al.  The Colli Albani mafic caldera (Roma, Italy): Stratigraphy, structure and petrology , 2006 .

[9]  D. Palladino,et al.  The Villa Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario , 1997 .

[10]  Michele Cercato,et al.  Electrical resistivity and seismic refraction tomography to detect buried cavities , 2008 .

[11]  M. Parotto,et al.  Carta geologica del Complesso vulcanico dei Colli Albani , 1988 .

[12]  Giulia Caneva,et al.  Tree roots and damages in the Jewish catacombs of Villa Torlonia (Roma) , 2009 .

[13]  M. Cecconi,et al.  Structural features and mechanical behaviour of a pyroclastic weak rock , 2001 .

[14]  S. Aversa,et al.  The Mechanical Behaviour of a Pyroclastic Rock: Yield Strength and “Destructuration” Effects , 1998 .