Improving the radiative decay rate for dye molecules with hyperbolic metamaterials.

We directly demonstrate an improvement in the radiative decay rate of dye molecules near multilayer hyperbolic metamaterials (HMMs). Our comprehensive study shows a radiative decay rate for rhodamine 800 (Rh800) that is several times higher due to the use of HMM samples as compared to dielectric substrates. This is also the first experimental demonstration that multilayer hyperbolic metamaterials provide an increase in the radiative decay rate relative to those from either thin or thick gold films.

[1]  E. Purcell,et al.  Line Shapes in Nuclear Paramagnetism , 1948 .

[2]  A. M. Merzlikin,et al.  Additional effective medium parameters for composite materials (excess surface currents). , 2011, Optics express.

[3]  R. Soref,et al.  Electroluminescence efficiency enhancement using metal nanoparticles , 2008 .

[4]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[5]  William L. Barnes,et al.  Emission of light through thin silver films via near-field coupling to surface plasmon polaritons , 2006 .

[6]  Sergei V. Zhukovsky,et al.  Dipole radiation near hyperbolic metamaterials: Applicability of effective medium approximation , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[7]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[8]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[9]  A. R. Williams,et al.  Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer , 1983 .

[10]  Yongxia Zhang,et al.  Metal-enhanced phosphorescence (MEP) , 2006 .

[11]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[12]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[13]  R. Soref,et al.  Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit , 2007 .

[14]  Joseph R Lakowicz,et al.  Radiative decay engineering 3. Surface plasmon-coupled directional emission. , 2004, Analytical biochemistry.

[15]  Vladimir M. Shalaev,et al.  Nanoantenna array-induced fluorescence enhancement and reduced lifetimes , 2008 .

[16]  Y. Kivshar,et al.  Surface Bloch waves in metamaterial and metal-dielectric superlattices , 2009, 0906.0404.

[17]  E. Narimanov,et al.  Optical hyperspace for plasmons: Dyakonov states in metamaterials , 2008, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[18]  Joseph R. Lakowicz,et al.  Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons , 2005, Journal of Fluorescence.

[19]  Johannes Falnes,et al.  Fluorescence lifetime studies of Rhodamine 6G in methanol , 1977 .

[20]  S. M. Rytov,et al.  Electromagnetic Properties of a Finely Stratified Medium , 2014 .

[21]  D. Benfey,et al.  Diode-pumped dye laser analysis and design. , 1992, Applied optics.

[22]  Z. Jacob,et al.  Controlling spontaneous emission with metamaterials. , 2010, Optics letters.

[23]  D. Bradley,et al.  Surface plasmon coupled emission using conjugated light-emitting polymer films [Invited] , 2011 .

[24]  J. Ketterson,et al.  Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film , 2008 .

[25]  Yuri S. Kivshar,et al.  Spontaneous radiation of a finite-size dipole emitter in hyperbolic media , 2011, 1105.5692.

[26]  L. J. Cox Ellipsometry and Polarized Light , 1978 .

[27]  A. Kildishev,et al.  Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions , 2011 .

[28]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .

[29]  M. Fujii,et al.  Surface Plasmon-Mediated Light Emission from Dye Layer in Reverse Attenuated Total Reflection Geometry , 2008 .

[30]  Vladimir M. Shalaev,et al.  Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate , 2006, Physical review B.

[31]  D. Axelrod,et al.  Fluorescence emission at dielectric and metal-film interfaces , 1987 .

[32]  Alfons Penzkofer,et al.  Fluorescence quenching of rhodamine 6G in methanol at high concentration , 1986 .

[33]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[34]  Metamaterial based broadband engineering of quantum dot spontaneous emission , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[35]  A. Penzkofer,et al.  Concentration-dependent fluorescence behaviour of oxazine 750 and rhodamine 6G in porous silicate xerogel monoliths , 1995 .

[36]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[37]  Ignacy Gryczynski,et al.  Metal-enhanced fluorescence: an emerging tool in biotechnology. , 2005, Current opinion in biotechnology.

[38]  J. J. Burke,et al.  Surface-polaritonlike waves guided by thin, lossy metal films. , 1983, Optics letters.