Telecom-wavelength single-photon sources for quantum communications

This paper describes the progress towards the realization of efficient single-photon sources based on semiconductor quantum dots (QDs), for application in quantum key distribution and, more generally, quantum communications. We describe the epitaxial growth of QD arrays with low areal density and emitting in the telecom wavelength range, the nanofabrication of single-QD structures and devices, and their optical and electro-optical characterization. The potential for integration with monolithic microcavities is also discussed.

[1]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[2]  Andrea Fiore,et al.  Nanostructured current-confined single quantum dot light-emitting diode at 1300 nm. , 2006, Nano letters.

[3]  Evans,et al.  Scaling analysis of diffusion-mediated island growth in surface adsorption processes. , 1992, Physical review. B, Condensed matter.

[4]  Talon,et al.  Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. , 1992, Physical review letters.

[5]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[6]  J. S. Kim,et al.  Ordering of high-quality InAs quantum dots on defect-free nanoholes , 2006 .

[7]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[8]  Andrea Fiore,et al.  Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes , 2004 .

[9]  P. Petroff,et al.  Nonclassical radiation from a single self-assembled InAs quantum dot , 2001 .

[10]  M. Kamp,et al.  Ultrahigh-quality photonic crystal cavity in GaAs. , 2006, Optics letters.

[11]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[12]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[13]  O. Schmidt,et al.  Photoluminescence from seeded three-dimensional InAs∕GaAs quantum-dot crystals , 2006 .

[14]  Val Zwiller,et al.  Growth and characterization of single quantum dots emitting at 1300 nm , 2005 .

[15]  A. Malko,et al.  Single-photon emission from pyramidal quantum dots: The impact of hole thermalization on photon emission statistics , 2005 .

[16]  Kohki Mukai,et al.  Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3 μm , 2000 .

[17]  Mario Dagenais,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[18]  Susumu Noda,et al.  Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities. , 2006, Optics express.

[19]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[20]  E. Kapon,et al.  Single-Photon Emission from Site-Controlled Pyramidal Quantum Dots , 2004 .

[21]  Andrea Fiore,et al.  Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots , 2004 .

[22]  A. Fiore,et al.  High-efficiency light-emitting diodes at /spl ap/1.3 /spl mu/m using InAs-InGaAs quantum dots , 2000, IEEE Photonics Technology Letters.

[23]  David A. Williams,et al.  Electrically pumped single-photon sources in lateral p-i-n junctions , 2004 .

[24]  M. Henini,et al.  Stark shift in electroluminescence of individual InAs quantum dots , 2000 .

[25]  R. Mirin Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot , 2004 .

[26]  R. Brouri,et al.  Photon antibunching in the fluorescence of individual color centers in diamond. , 2000, Optics letters.

[27]  Mats-Erik Pistol,et al.  Single quantum dots emit single photons at a time: Antibunching experiments , 2001 .

[28]  Marc Ilegems,et al.  Scaling quantum-dot light-emitting diodes to submicrometer sizes , 2002 .

[29]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[30]  D. Ritchie,et al.  Size evolution of site-controlled InAs quantum dots grown by molecular beam epitaxy on prepatterned GaAs substrates , 2006 .

[31]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[32]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical Review Letters.

[33]  Kyo Inoue,et al.  Secure communication: Quantum cryptography with a photon turnstile , 2002, Nature.

[34]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[35]  Jen-Inn Chyi,et al.  Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. , 2006, Physical review letters.

[36]  T. Jones,et al.  Growth rate effects on the size, composition and optical properties of InAs/GaAs quantum dots grown by molecular beam epitaxy , 2001 .

[37]  Leonard,et al.  Critical layer thickness for self-assembled InAs islands on GaAs. , 1994, Physical review. B, Condensed matter.

[38]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[39]  E. Kapon,et al.  Electroluminescence from a Single Pyramidal Quantum Dot in a Light-Emitting Diode , 2004 .

[40]  U. Woggon,et al.  Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots , 2003 .

[41]  Annamaria Gerardino,et al.  Time-resolved and antibunching experiments on single quantum dots at 1300 nm , 2006 .

[42]  Andrew J. Shields,et al.  On-demand single-photon source for 1.3μm telecom fiber , 2005 .

[43]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[44]  Wolfgang Werner Langbein,et al.  Structural and electrooptical characteristics of quantum dots emitting at 1.3 /spl mu/m on gallium arsenide , 2001 .

[45]  D. A. Ritchie,et al.  Electrically addressing a single self-assembled quantum dot , 2006 .

[46]  Pascal Baldi,et al.  High-quality asynchronous heralded single-photon source at telecom wavelength , 2004 .

[47]  Dirk Reuter,et al.  Fabrication of genuine single-quantum-dot light-emitting diodes , 2006 .

[48]  A. Hardy,et al.  Control and suppression of chaos in flared laser systems: a numerical analysis , 1998 .

[49]  Bruno Gayral,et al.  Toward high-efficiency quantum-dot single-photon sources , 2004, SPIE OPTO.

[50]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[51]  Yasuhiko Arakawa,et al.  Non-classical Photon Emission from a Single InAs/InP Quantum Dot in the 1.3-µm Optical-Fiber Band , 2004 .

[52]  Tomonori Ishikawa,et al.  Site-controlled self-organization of individual InAs quantum dots by scanning tunneling probe-assisted nanolithography , 1999 .

[53]  A. Fiore,et al.  Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications , 2002 .

[54]  A. K. Kalagin,et al.  Electrically driven single quantum dot polarised single photon emitter , 2006 .

[55]  B. Gayral,et al.  Semiconductor microcavities, quantum boxes and the Purcell effect , 1999 .