Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena

AbstractA simple example is considered of Hill's equation $$\ddot x + (a^2 + bp(t))x = 0$$ , where the forcing termp, instead of periodic, is quasi-periodic with two frequencies. A geometric exploration is carried out of certain resonance tongues, containing instability pockets. This phenomenon in the perturbative case of small |b|, can be explained by averaging. Next a numerical exploration is given for the global case of arbitraryb, where some interesting phenomena occur. Regarding these, a detailed numerical investigation and tentative explanations are presented.

[1]  Mark Levi,et al.  Geometrical aspects of stability theory for Hill's equations , 1995 .

[2]  J. Villanueva,et al.  Effective reducibility of quasi-periodic linear equations close to constant coefficients , 1997 .

[3]  H. Broer,et al.  Quasi-Periodic Stability of Subfamilies of an Unfolded Skew Hopf Bifurcation , 2000 .

[4]  Carles Simó,et al.  Resonance Tongues in Hill's Equations: A Geometric Approach , 2000 .

[5]  Jacques Laskar,et al.  The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .

[6]  George Huitema,et al.  Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .

[7]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[8]  Àngel Jorba,et al.  On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .

[9]  C. Simó,et al.  On quasi-periodic perturbations of elliptic equilibrium points , 1996 .

[10]  Hendrik Broer,et al.  A reversible bifurcation analysis of the inverted pendulum , 1998 .

[11]  L. Galgani,et al.  Formal integrals for an autonomous Hamiltonian system near an equilibrium point , 1978 .

[12]  Russell Johnson Cantor spectrum for the quasi-periodic Schrödinger equation , 1991 .

[13]  J. Moser,et al.  An extension of a result by Dinaburg and Sinai on quasi-periodic potentials , 1984 .

[14]  Jacques Laskar,et al.  The Chaotic Motion of the Solar System , 1993 .

[15]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[16]  Gert Vegter,et al.  Bifurcational Aspects of Parametric Resonance , 1992 .

[17]  R. Krikorian Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans des groupes compacts , 1999 .

[18]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[19]  H. Broer,et al.  On a quasi-periodic Hopf bifurcation , 1987 .