A simple model for the vanadium redox battery

A two-dimensional stationary model, based on the universal conservation laws and coupled with electrochemical reactions, is applied to describe a single all-vanadium redox flow cell. Emphasis is placed on studying the effects of applied current density, electrode porosity and local mass transfer coefficient on the cell performance. The model results indicate that bulk reaction rate depends on the applied current density. The transfer current density and over-potential increase almost twice as the applied current density doubled. A decrease in electrode porosity leads to a more rapid depletion of the reactant concentration, a higher integral average value of the transfer current density and a more uniform distribution of the over-potential. The local mass transfer coefficient only affects the value of the over-potential.

[1]  J. R. Selman,et al.  Effects of Separator and Terminal on the Current Distribution in Parallel‐Plate Electrochemical Flow Reactors , 1982 .

[2]  K. Kinoshita,et al.  Mass‐Transfer Study of Carbon Felt, Flow‐Through Electrode , 1982 .

[3]  Mark W. Verbrugge,et al.  Ion and Solvent Transport in Ion‐Exchange Membranes II . A Radiotracer Study of the Sulfuric‐Acid, Nation‐117 System , 1990 .

[4]  Peter S. Fedkiw,et al.  A mathematical model for the iron/chromium redox battery , 1984 .

[5]  M. M. Tomadakis,et al.  Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results , 2005 .

[6]  D. Schmal,et al.  Mass transfer at carbon fibre electrodes , 1986 .

[7]  Ralph E. White,et al.  A Mathematical Model of a Zinc/Bromine Flow Cell , 1987 .

[8]  Tomoo Yamamura,et al.  Electron-Transfer Kinetics of Np3 + ∕ Np4 + , NpO2 + ∕ NpO2 2 + , V2 + ∕ V3 + , and VO2 + ∕ VO2 + at Carbon Electrodes , 2005 .

[9]  Frank C. Walsh,et al.  A dynamic performance model for redox-flow batteries involving soluble species , 2008 .

[10]  Mark W. Verbrugge,et al.  Ion and Solvent Transport in Ion‐Exchange Membranes I . A Macrohomogeneous Mathematical Model , 1990 .

[11]  Huamin Zhang,et al.  A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery , 2006 .

[12]  Shanhai Ge,et al.  Study of a high power density sodium polysulfide/bromine energy storage cell , 2004 .

[13]  David Sinton,et al.  High-performance microfluidic vanadium redox fuel cell , 2007 .

[14]  Maria Skyllas-Kazacos,et al.  Water transfer behaviour across cation exchange membranes in the vanadium redox battery , 2003 .

[15]  Ralph E. White,et al.  A Review of Mathematical Modeling of the Zinc/Bromine Flow Cell and Battery , 1987 .

[16]  D. Sauer,et al.  Advances in redox-flow batteries , 2006 .

[17]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[18]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Maria Skyllas-Kazacos,et al.  A study of the V(II)/V(III) redox couple for redox flow cell applications , 1985 .

[21]  V. Montiel,et al.  Characterization of a carbon felt electrode: structural and physical properties , 1999 .