Query Morphing: A Proximity-Based Approach for Data Exploration and Query Reformulation

Evolution of Extremely large databases is a vital challenge for data processing via traditional database systems, such as scientific DB, Genome DB, Social Media DB etc. As these DBs are often stored in a complex schema, and inherent vastness raises challenges to a naive user on initial data request formulation and comprehending the resulting content. A discovery-oriented search mechanism delivers good results in these information seeking scenario, as the user can stepwise explore the database and stop when the result content and quality reaches his satisfaction point. In this, understanding user’s actual search intentions and how the search motives change with session progress will help greatly in achieving a search goal. A proximity-based data exploration approach, which explores the neighborhood and subsequently guides a user to overcome these limitations, named as ‘Query morphing’ is proposed in this paper. Various design issues and implementation constraints of the proposed approach are also listed.

[1]  Olga Papaemmanouil,et al.  Explore-by-example: an automatic query steering framework for interactive data exploration , 2014, SIGMOD Conference.

[2]  Martin L. Kersten,et al.  Meet Charles, big data query advisor , 2013, CIDR.

[3]  Peter J. Haas,et al.  Interactive data Analysis: The Control Project , 1999, Computer.

[4]  Vikram Singh,et al.  A scalable query materialization algorithm for interactive data exploration , 2016, 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC).

[5]  Abraham Silberschatz,et al.  Playful Query Specification with DataPlay , 2012, Proc. VLDB Endow..

[6]  David Maier,et al.  Query From Examples: An Iterative, Data-Driven Approach to Query Construction , 2015, Proc. VLDB Endow..

[7]  Stanley B. Zdonik,et al.  Query Steering for Interactive Data Exploration , 2013, CIDR.

[8]  Diogo Cabral,et al.  Designing for Exploratory Search on Touch Devices , 2015, CHI.

[9]  Jignesh M. Patel,et al.  Data Morphing: An Adaptive, Cache-Conscious Storage Technique , 2003, VLDB.

[10]  Surajit Chaudhuri,et al.  Overview of Data Exploration Techniques , 2015, SIGMOD Conference.

[11]  Dorota Glowacka,et al.  IntentStreams: Smart Parallel Search Streams for Branching Exploratory Search , 2015, IUI.

[12]  Gerard Salton,et al.  Improving Retrieval Performance by Relevance Feedback , 1997 .

[13]  Aniket Kittur,et al.  Apolo: making sense of large network data by combining rich user interaction and machine learning , 2011, CHI.

[14]  Abraham Silberschatz,et al.  Learning and verifying quantified boolean queries by example , 2013, PODS '13.

[15]  Ion Stoica,et al.  BlinkDB: queries with bounded errors and bounded response times on very large data , 2012, EuroSys '13.

[16]  Bahar Qarabaqi,et al.  User-driven refinement of imprecise queries , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[17]  Bin Zhang,et al.  TimeTree: A Novel Way to Visualize and Manage Exploratory Search Process , 2016, HCI.

[18]  Peter Brusilovsky,et al.  Adaptive visualization for exploratory information retrieval , 2013, Inf. Process. Manag..

[19]  Dorota Glowacka,et al.  Directing exploratory search: reinforcement learning from user interactions with keywords , 2013, IUI '13.

[20]  Guoliang Li,et al.  Interactive SQL query suggestion: Making databases user-friendly , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[21]  Samuel Kaski,et al.  Interactive intent modeling , 2014, Commun. ACM.

[22]  Ameet Talwalkar,et al.  Knowing when you're wrong: building fast and reliable approximate query processing systems , 2014, SIGMOD Conference.

[23]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[24]  Sridhar Ramaswamy,et al.  The Aqua approximate query answering system , 1999, SIGMOD '99.

[25]  Surajit Chaudhuri,et al.  Discovering queries based on example tuples , 2014, SIGMOD Conference.

[26]  Evaggelia Pitoura,et al.  YmalDB: exploring relational databases via result-driven recommendations , 2013, The VLDB Journal.

[27]  Martin L. Kersten,et al.  The researcher's guide to the data deluge , 2011, Proc. VLDB Endow..

[28]  Gary Marchionini,et al.  Report on ACM SIGIR 2006 workshop on evaluating exploratory search systems , 2006, SIGF.

[29]  Jeffrey Xu Yu,et al.  Keyword Search in Databases , 2010, Keyword Search in Databases.

[30]  Diogo Cabral,et al.  InspirationWall: Supporting Idea Generation Through Automatic Information Exploration , 2015, Creativity & Cognition.

[31]  Dorota Glowacka,et al.  Directing exploratory search with interactive intent modeling , 2013, CIKM.

[32]  Ryen W. White,et al.  Exploratory Search: Beyond the Query-Response Paradigm , 2009, Exploratory Search: Beyond the Query-Response Paradigm.

[33]  Fotis Psallidas,et al.  S4: Top-k Spreadsheet-Style Search for Query Discovery , 2015, SIGMOD Conference.

[34]  Helen J. Wang,et al.  Online aggregation , 1997, SIGMOD '97.

[35]  Angela Bonifati,et al.  Interactive Inference of Join Queries , 2014, EDBT.