Electronic and optical properties of Dirac semimetals in InAs/GaInSb superlattice nanostructures

In this work we discuss technological aspects of creating a linear energy dispersion spectrum of charge carriers in semiconductor materials and report on the experimental realization of the topological Dirac semimetals (DSM) in nanostructurally engineered zero-gap InAs/GaInSb superlattices (SL) [1]. The SL samples are synthesized by molecular beam epitaxy, which provides monolayer accuracy for growing high-quality single-crystals on large area substrates. The prospects for designing the topological insulator (TI) SLs with the same approach and first results of experimental characterization of the TI candidates are also presented.