The KATRIN superconducting magnets: overview and first performance results

Author(s): Arenz, M; Baek, WJ; Beck, M; Beglarian, A; Behrens, J; Bergmann, T; Berlev, A; Besserer, U; Blaum, K; Bode, T; Bornschein, B; Bornschein, L; Brunst, T; Buzinsky, N; Chilingaryan, S; Choi, WQ; Deffert, M; Doe, PJ; Dragoun, O; Drexlin, G; Dyba, S; Edzards, F; Eitel, K; Ellinger, E; Engel, R; Enomoto, S; Erhard, M; Eversheim, D; Fedkevych, M; Formaggio, JA; Frankle, FM; Franklin, GB; Friedel, F; Fulst, A; Gil, W; Gluck, F; Urena, AG; Grohmann, S; Grossle, R; Gumbsheimer, R; Hackenjos, M; Hannen, V; Harms, F; Hausmann, N; Heizmann, F; Helbing, K; Herz, W; Hickford, S; Hilk, D; Howe, MA; Huber, A; Jansen, A; Kellerer, J; Kernert, N; Kippenbrock, L; Kleesiek, M; Klein, M; Kopmann, A; Korzeczek, M; Kovalik, A; Krasch, B; Kraus, M; Kuckert, L; Lasserre, T; Lebeda, O; Letnev, J; Lokhov, A; Machatschek, M; Marsteller, A; Martin, EL; Mertens, S; Mirz, S; Monreal, B; Neumann, H; Niemes, S; Off, A; Osipowicz, A; Otten, E; Parno, DS; Pollithy, A; Poon, AWP; Priester, F; Ranitzsch, PCO; Rest, O; Robertson, RGH | Abstract: © 2018 The Author(s). The KATRIN experiment aims for the determination of the effective electron anti-neutrino mass from the tritium beta-decay with an unprecedented sub-eV sensitivity. The strong magnetic fields, designed for up to 6 T, adiabatically guide β-electrons from the source to the detector within a magnetic flux of 191 Tcm2. A chain of ten single solenoid magnets and two larger superconducting magnet systems have been designed, constructed, and installed in the 70-m-long KATRIN beam line. The beam diameter for the magnetic flux varies from 0.064 m to 9 m, depending on the magnetic flux density along the beam line. Two transport and tritium pumping sections are assembled with chicane beam tubes to avoid direct "line-of-sight" molecular beaming effect of gaseous tritium molecules into the next beam sections. The sophisticated beam alignment has been successfully cross-checked by electron sources. In addition, magnet safety systems were developed to protect the complex magnet systems against coil quenches or other system failures. The main functionality of the magnet safety systems has been successfully tested with the two large magnet systems. The complete chain of the magnets was operated for several weeks at 70% of the design fields for the first test measurements with radioactive krypton gas. The stability of the magnetic fields of the source magnets has been shown to be better than 0.01% per month at 70% of the design fields. This paper gives an overview of the KATRIN superconducting magnets and reports on the first performance results of the magnets.

W.-J. Baek | A. W. P. Poon | G. Drexlin | U. Besserer | K. Helbing | K. Valerius | O. Lebeda | D. Eversheim | N. Trost | R. Engel | J. F. Wilkerson | S. Hickford | N. Buzinsky | H. Neumann | M. A. Howe | A. Kopmann | M. Sturm | J. A. Formaggio | T. Bode | A. Beglarian | E. L. Martin | M. Steidl | J. Wolf | K. Blaum | C. Weinheimer | M. Kraus | S. Mertens | R. G. H. Robertson | M. Erhard | H. H. Telle | S. Chilingaryan | A. Lokhov | F. Roccati | V. Sibille | O. Rest | V. Hannen | A. Lokhov | K. Helbing | S. Hickford | K. Blaum | M. Sturm | J. Behrens | J. Wilkerson | R. Robertson | J. Formaggio | P. Doe | A. Poon | T. Lasserre | M. Howe | B. Bornschein | L. Bornschein | T. Thümmler | C. Weinheimer | S. Enomoto | T. Bode | Á. G. Ureña | M. Röllig | B. Monreal | V. Sibille | N. Buzinsky | O. Dragoun | G. Drexlin | V. Hannen | A. Huber | M. Korzeczek | S. Mertens | P. Ranitzsch | O. Rest | N. Steinbrink | K. Valerius | J. Wolf | R. Engel | H. Telle | S. Chilingaryan | S. Grohmann | I. Tkachev | R. Gumbsheimer | A. Kopmann | T. Bergmann | W. Herz | T. Bergmann | D. Eversheim | T. Lasserre | M. Kleesiek | J. Behrens | K. Eitel | S. Wustling | W. Herz | N. Trost | M. Erhard | F. Harms | F. Heizmann | D. Hilk | M. Kleesiek | F. Fränkle | F. Glück | A. Beglarian | A. Osipowicz | M. Steidl | P. J. Doe | F. Priester | A. Osipowicz | R. Vianden | T. Thummler | S. Enomoto | H. Neumann | D. Parno | G. B. Franklin | R. Gumbsheimer | N. Kernert | O. Dragoun | B. Bornschein | S. Grohmann | L. Bornschein | R. Vianden | S. Zadoroghny | J. Wendel | L. Kippenbrock | S. Welte | M. Beck | T. Brunst | M. Deffert | S. Dyba | F. Edzards | E. Ellinger | M. Fedkevych | F. Friedel | A. Fulst | M. Hackenjos | F. Harms | F. Heizmann | D. Hilk | A. Huber | A. Jansen | L. Kippenbrock | M. Korzeczek | B. Krasch | L. Kuckert | J. Letnev | M. Machatschek | A. Marsteller | S. Mirz | B. Monreal | S. Niemes | A. Pollithy | C. Rodenbeck | R. Sack | A. Saenz | L. Schimpf | M. Schrank | H. Seitz-Moskaliuk | N. Steinbrink | N. Titov | C. Weiss | M. Beck | O. Lebeda | S. Welte | U. Besserer | D. S. Parno | F. Gluck | M. Rollig | M. Schlosser | M. Arenz | A. Berlev | W. Q. Choi | F. M. Frankle | n W. Gil | A. Gonzalez Urena | R. Grossle | N. Haussmann | J. Kellerer | M. Klein | A. Koval'ik | A. Off | uE. Otten | P. C.-O. Ranitzsch | C. Rottele | M. Ryvsav'y | K. Schlosser | K. Schonung | J. Sentkerestiov'a | M. Slez'ak | M. Suchopar | L. A. Thorne | I. Tkachev | D. V'enos | A. P. Vizcaya Hern'andez | M. Weber | K. Schönung | K. Eitel | E. Ellinger | A. Marsteller | F. Friedel | M. Hackenjos | A. Jansen | F. Priester | C. Röttele | W.-J. Baek | A. Berlev | T. Brunst | W. Choi | M. Deffert | S. Dyba | F. Edzards | M. Fedkevych | G. Franklin | A. Fulst | W. Gil | R. Grössle | N. Kernert | B. Krasch | J. Letnev | M. Machatschek | S. Mirz | S. Niemes | A. Off | A. Pollithy | C. Rodenbeck | M. Rysavy | R. Sack | A. Saenz | L. Schimpf | K. Schlösser | M. Schlösser | M. Schrank | H. Seitz-Moskaliuk | L. Thorne | N. Titov | C. Weiss | J. Wendel | S. Wüstling | M. Kraus | L. Kuckert | M. Arenz | A. Koval'ik | M. Weber | S. Zadoroghny | M. Slez'ak | D. V'enos | E. L. Martin | F. Roccati | H. Telle | M. Klein | E. Otten | M. Slezák | M. Suchopár | J. Sentkerestiov'a | J. Kellerer | N. Haussmann | A. V. Hernández | M. Ryšavý | M. Klein | H. Neumann | T. Lasserre | S. Mertens | G. B. Franklin | Matthias Weber | K. Blaum | T. Bode | R. Engel | Sanshiro Enomoto | F. Glück | Ernst W. Otten | Alejandro Saenz | I. Tkachev | C. Weinheimer

[1]  A. Kosmider Tritium Retention Techniques in the KATRIN Transport Section and Commissioning of its DPS2-F Cryostat , 2016 .

[2]  T. Höhn,et al.  Quench Detection Performance of the Magnet Safety System for the Inductively Coupled KATRIN Source Magnets , 2018, IEEE Transactions on Applied Superconductivity.

[3]  M. Noe,et al.  The development of the KATRIN magnet system , 2006 .

[4]  N. Wandkowsky,et al.  Electromagnetic design of the large-volume air coil system of the KATRIN experiment , 2013 .

[5]  Felix Sharipov,et al.  Modelling of gas dynamical properties of the Katrin tritium source and implications for the neutrino mass measurement , 2018, Vacuum.

[6]  P. E. Burke,et al.  The Accurate Computation of Self and Mutual Inductances of Circular Coils , 1978, IEEE Transactions on Power Apparatus and Systems.

[7]  A. Osipowicz,et al.  A mobile magnetic sensor unit for the KATRIN main spectrometer , 2012, 1207.3926.

[8]  B. Zipfel,et al.  Electron optical imaging properties of the KATRIN high field solenoid chain , 2014 .

[9]  K. Juengst,et al.  The KATRIN magnet system , 2004, IEEE Transactions on Applied Superconductivity.

[10]  Ch. Weinheimer,et al.  Precision high voltage divider for the KATRIN experiment , 2009, 0908.1523.

[11]  S. Lukic,et al.  A broad-band FT-ICR Penning trap system for KATRIN , 2009, 0907.3458.

[12]  A. A. Golubev,et al.  An upper limit on electron antineutrino mass from Troitsk experiment , 2011, 1108.5034.

[13]  M. Süßer,et al.  The thermal behaviour of the tritium source in KATRIN , 2013 .

[14]  J. Behrens,et al.  A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment , 2017, 1703.05272.

[15]  W. Gil Quench Detection Method for the Inductively Coupled Superconducting Magnets of KATRIN , 2016, IEEE Transactions on Applied Superconductivity.

[16]  G. Drexlin,et al.  Current Direct Neutrino Mass Experiments , 2013, 1307.0101.

[17]  R. Gehring,et al.  Investigation of turbo-molecular pumps in strong magnetic fields , 2011 .

[18]  A. Picard,et al.  A solenoid retarding spectrometer with high resolution and transmission for keV electrons , 1992 .

[19]  S. Groh Modeling of the response function and measurement of transmission properties of the KATRIN experiment , 2016 .

[20]  A. Lokhov,et al.  Commissioning of the vacuum system of the KATRIN Main Spectrometer , 2016, 1603.01014.

[21]  N. Wandkowsky,et al.  Technical design and commissioning of the KATRIN large-volume air coil system , 2017, 1712.01078.

[22]  C. Kraus,et al.  Final results from phase II of the Mainz neutrino mass searchin tritium ${\beta}$ decay , 2004, hep-ex/0412056.

[23]  Horst Demattio,et al.  Development of Quench Detection System for W7-X , 2007 .

[24]  M. Tassisto,et al.  Status of the Magnets of the Two Tritium Pumping Sections for KATRIN , 2012, IEEE transactions on applied superconductivity.

[25]  H. Neumann,et al.  COMMISSIONING OF THE CRYOGENIC TRANSFER LINE FOR THE KATRIN EXPERIMENT , 2010 .

[26]  A. Lokhov,et al.  First transmission of electrons and ions through the KATRIN beamline , 2018, 1802.04167.

[27]  D. Meeker,et al.  Finite Element Method Magnetics , 2002 .

[28]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[29]  M. Noe,et al.  CRYOGENIC DESIGN OF THE KATRIN SOURCE CRYOSTAT , 2008 .

[30]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[31]  Martin N. Wilson,et al.  Superconducting Magnets , 1984 .

[32]  J. Fischer,et al.  Focal-plane detector system for the KATRIN experiment , 2014, 1404.2925.

[33]  R. Gehring,et al.  The Cryogenic Pumping Section of the KATRIN Experiment , 2010, IEEE Transactions on Applied Superconductivity.

[34]  T. Thümmler,et al.  Technical design and commissioning of a sensor net for fine-meshed measuring of the magnetic field at the KATRIN spectrometer , 2018, Journal of Instrumentation.

[35]  C. Kraus,et al.  Final Results from phase II of the Mainz Neutrino Mass Search in Tritium β Decay , 2004 .

[36]  D. Hagedorn,et al.  Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets , 2014 .

[37]  F. Glück AXISYMMETRIC ELECTRIC FIELD CALCULATION WITH ZONAL HARMONIC EXPANSION , 2011 .

[38]  L. Cesnak,et al.  Magnetic field stability of superconducting magnets , 1977 .

[39]  W. Gil First Operation of the Complete KATRIN Superconducting Magnet Chain , 2018, IEEE Transactions on Applied Superconductivity.

[40]  F. Glück,et al.  AXISYMMETRIC MAGNETIC FIELD CALCULATION WITH ZONAL HARMONIC EXPANSION , 2011 .

[41]  P. Spivak,et al.  A method for measuring the electron antineutrino rest mass , 1985 .

[42]  R. Gehring,et al.  Optimization Calculations for the KATRIN Magnet System , 2006, IEEE Transactions on Applied Superconductivity.

[43]  N. Wandkowsky,et al.  Kassiopeia: a modern, extensible C++ particle tracking package , 2016, 1612.00262.

[44]  T. Höhn,et al.  Commissioning the Magnet Safety System of the Cryogenic Pumping Section of KATRIN , 2017, IEEE Transactions on Applied Superconductivity.

[45]  S. Grohmann Stability analyses of the beam tube cooling system in the KATRIN source cryostat , 2009 .

[46]  D. W. Turner,et al.  The collimating and magnifying properties of a superconducting field photoelectron spectrometer , 1980 .

[47]  T. Höhn,et al.  High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment , 2014 .

[48]  F. Fraenkle Background Investigations of the KATRIN Pre-Spectrometer , 2013 .

[49]  F. Hochschulz,et al.  Next generation KATRIN high precision voltage divider for voltages up to 65kV , 2013, 1309.4955.