The KATRIN superconducting magnets: overview and first performance results
暂无分享,去创建一个
W.-J. Baek | A. W. P. Poon | G. Drexlin | U. Besserer | K. Helbing | K. Valerius | O. Lebeda | D. Eversheim | N. Trost | R. Engel | J. F. Wilkerson | S. Hickford | N. Buzinsky | H. Neumann | M. A. Howe | A. Kopmann | M. Sturm | J. A. Formaggio | T. Bode | A. Beglarian | E. L. Martin | M. Steidl | J. Wolf | K. Blaum | C. Weinheimer | M. Kraus | S. Mertens | R. G. H. Robertson | M. Erhard | H. H. Telle | S. Chilingaryan | A. Lokhov | F. Roccati | V. Sibille | O. Rest | V. Hannen | A. Lokhov | K. Helbing | S. Hickford | K. Blaum | M. Sturm | J. Behrens | J. Wilkerson | R. Robertson | J. Formaggio | P. Doe | A. Poon | T. Lasserre | M. Howe | B. Bornschein | L. Bornschein | T. Thümmler | C. Weinheimer | S. Enomoto | T. Bode | Á. G. Ureña | M. Röllig | B. Monreal | V. Sibille | N. Buzinsky | O. Dragoun | G. Drexlin | V. Hannen | A. Huber | M. Korzeczek | S. Mertens | P. Ranitzsch | O. Rest | N. Steinbrink | K. Valerius | J. Wolf | R. Engel | H. Telle | S. Chilingaryan | S. Grohmann | I. Tkachev | R. Gumbsheimer | A. Kopmann | T. Bergmann | W. Herz | T. Bergmann | D. Eversheim | T. Lasserre | M. Kleesiek | J. Behrens | K. Eitel | S. Wustling | W. Herz | N. Trost | M. Erhard | F. Harms | F. Heizmann | D. Hilk | M. Kleesiek | F. Fränkle | F. Glück | A. Beglarian | A. Osipowicz | M. Steidl | P. J. Doe | F. Priester | A. Osipowicz | R. Vianden | T. Thummler | S. Enomoto | H. Neumann | D. Parno | G. B. Franklin | R. Gumbsheimer | N. Kernert | O. Dragoun | B. Bornschein | S. Grohmann | L. Bornschein | R. Vianden | S. Zadoroghny | J. Wendel | L. Kippenbrock | S. Welte | M. Beck | T. Brunst | M. Deffert | S. Dyba | F. Edzards | E. Ellinger | M. Fedkevych | F. Friedel | A. Fulst | M. Hackenjos | F. Harms | F. Heizmann | D. Hilk | A. Huber | A. Jansen | L. Kippenbrock | M. Korzeczek | B. Krasch | L. Kuckert | J. Letnev | M. Machatschek | A. Marsteller | S. Mirz | B. Monreal | S. Niemes | A. Pollithy | C. Rodenbeck | R. Sack | A. Saenz | L. Schimpf | M. Schrank | H. Seitz-Moskaliuk | N. Steinbrink | N. Titov | C. Weiss | M. Beck | O. Lebeda | S. Welte | U. Besserer | D. S. Parno | F. Gluck | M. Rollig | M. Schlosser | M. Arenz | A. Berlev | W. Q. Choi | F. M. Frankle | n W. Gil | A. Gonzalez Urena | R. Grossle | N. Haussmann | J. Kellerer | M. Klein | A. Koval'ik | A. Off | uE. Otten | P. C.-O. Ranitzsch | C. Rottele | M. Ryvsav'y | K. Schlosser | K. Schonung | J. Sentkerestiov'a | M. Slez'ak | M. Suchopar | L. A. Thorne | I. Tkachev | D. V'enos | A. P. Vizcaya Hern'andez | M. Weber | K. Schönung | K. Eitel | E. Ellinger | A. Marsteller | F. Friedel | M. Hackenjos | A. Jansen | F. Priester | C. Röttele | W.-J. Baek | A. Berlev | T. Brunst | W. Choi | M. Deffert | S. Dyba | F. Edzards | M. Fedkevych | G. Franklin | A. Fulst | W. Gil | R. Grössle | N. Kernert | B. Krasch | J. Letnev | M. Machatschek | S. Mirz | S. Niemes | A. Off | A. Pollithy | C. Rodenbeck | M. Rysavy | R. Sack | A. Saenz | L. Schimpf | K. Schlösser | M. Schlösser | M. Schrank | H. Seitz-Moskaliuk | L. Thorne | N. Titov | C. Weiss | J. Wendel | S. Wüstling | M. Kraus | L. Kuckert | M. Arenz | A. Koval'ik | M. Weber | S. Zadoroghny | M. Slez'ak | D. V'enos | E. L. Martin | F. Roccati | H. Telle | M. Klein | E. Otten | M. Slezák | M. Suchopár | J. Sentkerestiov'a | J. Kellerer | N. Haussmann | A. V. Hernández | M. Ryšavý | M. Klein | H. Neumann | T. Lasserre | S. Mertens | G. B. Franklin | Matthias Weber | K. Blaum | T. Bode | R. Engel | Sanshiro Enomoto | F. Glück | Ernst W. Otten | Alejandro Saenz | I. Tkachev | C. Weinheimer
[1] A. Kosmider. Tritium Retention Techniques in the KATRIN Transport Section and Commissioning of its DPS2-F Cryostat , 2016 .
[2] T. Höhn,et al. Quench Detection Performance of the Magnet Safety System for the Inductively Coupled KATRIN Source Magnets , 2018, IEEE Transactions on Applied Superconductivity.
[3] M. Noe,et al. The development of the KATRIN magnet system , 2006 .
[4] N. Wandkowsky,et al. Electromagnetic design of the large-volume air coil system of the KATRIN experiment , 2013 .
[5] Felix Sharipov,et al. Modelling of gas dynamical properties of the Katrin tritium source and implications for the neutrino mass measurement , 2018, Vacuum.
[6] P. E. Burke,et al. The Accurate Computation of Self and Mutual Inductances of Circular Coils , 1978, IEEE Transactions on Power Apparatus and Systems.
[7] A. Osipowicz,et al. A mobile magnetic sensor unit for the KATRIN main spectrometer , 2012, 1207.3926.
[8] B. Zipfel,et al. Electron optical imaging properties of the KATRIN high field solenoid chain , 2014 .
[9] K. Juengst,et al. The KATRIN magnet system , 2004, IEEE Transactions on Applied Superconductivity.
[10] Ch. Weinheimer,et al. Precision high voltage divider for the KATRIN experiment , 2009, 0908.1523.
[11] S. Lukic,et al. A broad-band FT-ICR Penning trap system for KATRIN , 2009, 0907.3458.
[12] A. A. Golubev,et al. An upper limit on electron antineutrino mass from Troitsk experiment , 2011, 1108.5034.
[13] M. Süßer,et al. The thermal behaviour of the tritium source in KATRIN , 2013 .
[14] J. Behrens,et al. A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment , 2017, 1703.05272.
[15] W. Gil. Quench Detection Method for the Inductively Coupled Superconducting Magnets of KATRIN , 2016, IEEE Transactions on Applied Superconductivity.
[16] G. Drexlin,et al. Current Direct Neutrino Mass Experiments , 2013, 1307.0101.
[17] R. Gehring,et al. Investigation of turbo-molecular pumps in strong magnetic fields , 2011 .
[18] A. Picard,et al. A solenoid retarding spectrometer with high resolution and transmission for keV electrons , 1992 .
[19] S. Groh. Modeling of the response function and measurement of transmission properties of the KATRIN experiment , 2016 .
[20] A. Lokhov,et al. Commissioning of the vacuum system of the KATRIN Main Spectrometer , 2016, 1603.01014.
[21] N. Wandkowsky,et al. Technical design and commissioning of the KATRIN large-volume air coil system , 2017, 1712.01078.
[22] C. Kraus,et al. Final results from phase II of the Mainz neutrino mass searchin tritium ${\beta}$ decay , 2004, hep-ex/0412056.
[23] Horst Demattio,et al. Development of Quench Detection System for W7-X , 2007 .
[24] M. Tassisto,et al. Status of the Magnets of the Two Tritium Pumping Sections for KATRIN , 2012, IEEE transactions on applied superconductivity.
[25] H. Neumann,et al. COMMISSIONING OF THE CRYOGENIC TRANSFER LINE FOR THE KATRIN EXPERIMENT , 2010 .
[26] A. Lokhov,et al. First transmission of electrons and ions through the KATRIN beamline , 2018, 1802.04167.
[27] D. Meeker,et al. Finite Element Method Magnetics , 2002 .
[28] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[29] M. Noe,et al. CRYOGENIC DESIGN OF THE KATRIN SOURCE CRYOSTAT , 2008 .
[30] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[31] Martin N. Wilson,et al. Superconducting Magnets , 1984 .
[32] J. Fischer,et al. Focal-plane detector system for the KATRIN experiment , 2014, 1404.2925.
[33] R. Gehring,et al. The Cryogenic Pumping Section of the KATRIN Experiment , 2010, IEEE Transactions on Applied Superconductivity.
[34] T. Thümmler,et al. Technical design and commissioning of a sensor net for fine-meshed measuring of the magnetic field at the KATRIN spectrometer , 2018, Journal of Instrumentation.
[35] C. Kraus,et al. Final Results from phase II of the Mainz Neutrino Mass Search in Tritium β Decay , 2004 .
[36] D. Hagedorn,et al. Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets , 2014 .
[37] F. Glück. AXISYMMETRIC ELECTRIC FIELD CALCULATION WITH ZONAL HARMONIC EXPANSION , 2011 .
[38] L. Cesnak,et al. Magnetic field stability of superconducting magnets , 1977 .
[39] W. Gil. First Operation of the Complete KATRIN Superconducting Magnet Chain , 2018, IEEE Transactions on Applied Superconductivity.
[40] F. Glück,et al. AXISYMMETRIC MAGNETIC FIELD CALCULATION WITH ZONAL HARMONIC EXPANSION , 2011 .
[41] P. Spivak,et al. A method for measuring the electron antineutrino rest mass , 1985 .
[42] R. Gehring,et al. Optimization Calculations for the KATRIN Magnet System , 2006, IEEE Transactions on Applied Superconductivity.
[43] N. Wandkowsky,et al. Kassiopeia: a modern, extensible C++ particle tracking package , 2016, 1612.00262.
[44] T. Höhn,et al. Commissioning the Magnet Safety System of the Cryogenic Pumping Section of KATRIN , 2017, IEEE Transactions on Applied Superconductivity.
[45] S. Grohmann. Stability analyses of the beam tube cooling system in the KATRIN source cryostat , 2009 .
[46] D. W. Turner,et al. The collimating and magnifying properties of a superconducting field photoelectron spectrometer , 1980 .
[47] T. Höhn,et al. High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment , 2014 .
[48] F. Fraenkle. Background Investigations of the KATRIN Pre-Spectrometer , 2013 .
[49] F. Hochschulz,et al. Next generation KATRIN high precision voltage divider for voltages up to 65kV , 2013, 1309.4955.