An Evaporation Model for Formation of Carbonates in the ALH84001 Martian Meteorite

Small, discoid globules and networks of magnesium-iron-calcium carbonates occur within impact-produced fracture zones in the ALH84001 Martian meteorite. Because these carbonates contain or are associated with the hydrocarbons, single-domain magnetite and iron-sulfide grains, and purported microfossils that collectively have been cited as evidence for ancient Martian life, it is critically important to understand their formation. Previous hypotheses for the origin of the carbonates involve either alteration of the rock by hydrothermal fluids at relatively low temperatures, or formation from a CO2-rich vapor at high temperatures. This paper explores an alternative mechanism–direct precipitation from a ponded evaporating brine infiltrating into fractures in the floor of an impact crater. Such a model can be reconciled with the observed carbonate compositional zoning and extreme stable-isotopic fractionations. If the carbonates formed in this manner, this removes a possible obstacle to the proposed existence ...

[1]  B. Clark,et al.  The salts of Mars , 1981 .

[2]  R. Matsumoto,et al.  Origin and diagenetic evolution of Ca–Mg–Fe carbonates in some coalfields of Japan , 1981 .

[3]  S. Squyres,et al.  Early Mars: How Warm and How Wet? , 1994, Science.

[4]  W. Rose,et al.  Fumarole incrustations at active central american volcanoes , 1974 .

[5]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[6]  I. P. Wright,et al.  Record of fluid–rock interactions on Mars from the meteorite ALH84001 , 1994, Nature.

[7]  G. Layne,et al.  Hydrothermal Systems on Mars. Insights from Sulfur Isotopic Systematics in Alteration Assemblages in Martian Meteorite Allan Hills 84001 , 1996 .

[8]  Joseph L. Kirschvink,et al.  Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.

[9]  D P Glavin,et al.  A search for endogenous amino acids in martian meteorite ALH84001. , 1998, Science.

[10]  U. Schärer,et al.  A SEM-ATEM and stable isotope study of carbonates from the Haughton impact crater, Canada , 1994 .

[11]  J. Teller Paleohydrological indicators in playas and salt lakes, with examples from Canada, Australia, and Africa , 1990 .

[12]  H. McSween,et al.  Magnetite whiskers and platelets in the ALH84001 Martian meteorite: evidence of vapor phase growth. , 1996, Geochimica et cosmochimica acta.

[13]  A. Treiman A petrographic history of martian meteorite ALH84001: Two shocks and an ancient age , 1995 .

[14]  T. Ahrens,et al.  Dynamic compression and volatile release of carbonates , 1984 .

[15]  L. Leshin,et al.  Oxygen Isotopic Constraints on the Genesis of Carbonates from Martian Meteorite ALH84001 , 1998 .

[16]  J. Bridges,et al.  Melted Sediment from Mars in Nakhla , 1998 .

[17]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[18]  Joseph L. Kirschvink,et al.  Magnetofossils, the Magnetization of Sediments, and the Evolution of Magnetite Biomineralization , 1989 .

[19]  D. Canfield,et al.  Dissolution and pyritization of magnetite in anoxie marine sediments , 1987 .

[20]  T. Ahrens,et al.  Shock-induced CO2 loss from CaCO3; implications for early planetary atmospheres , 1986 .

[21]  L. Land,et al.  Diagenetic history of Eocene Wilcox sandstones, South-Central Texas , 1986 .

[22]  G. Desborough A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation: An alternative to the playa-lake model , 1978 .

[23]  J. Eiler,et al.  Stable Isotopes in Allan Hills 84001: an Ion Microprobe Study , 1997 .

[24]  A. J. T. Jull,et al.  Isotopic composition of carbonates in the SNC meteorites, Allan Hills 84001 and Zagami , 1997 .

[25]  James L. Gooding,et al.  Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite , 1993 .

[26]  C. Klein,et al.  Mineralogy and petrology of parts of the Marra Mamba Iron Formation, Hamersley Basin, Western Australia , 1981 .

[27]  Keith Nicholson,et al.  Geothermal Fluids: Chemistry and Exploration Techniques , 1993 .

[28]  S. Wentworth,et al.  Carbonates and sulfates in the Chassigny meteorite: Further evidence for aqueous chemistry on the SNC parent planet , 1994 .

[29]  W. Boynton,et al.  Petrography and bulk chemistry of Martian orthopyroxenite ALH84001: implications for the origin of secondary carbonates. , 1997, Geochimica et cosmochimica acta.

[30]  H. Y. McSween,et al.  Epitaxial growth of nanophase magnetite in Martian meteorite Allan Hills 84001: Implications for biogenic mineralization , 1998, Meteoritics & planetary science.

[31]  E. Gibson,et al.  Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.

[32]  J. Zimbelman,et al.  "White Rock": an eroded Martian lacustrine deposit(?) , 1994 .

[33]  C. Eastoe,et al.  Isotopic composition of carbonates in the SNC meteorites Allan Hills 84001 and Nakhla , 1995 .

[34]  R. Ash,et al.  Ar-Ar chronology of the Martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars. , 1995, Geochimica et cosmochimica acta.

[35]  K. Hsü,et al.  Freshwater Carbonate Sedimentation , 1978 .

[36]  Michael E. Zolensky,et al.  Aqueous alteration of the Nakhla meteorite , 1991 .

[37]  J. Beck,et al.  Isotopic evidence for a terrestrial source of organic compounds found in martian meteorites Allan Hills 84001 and Elephant Moraine 79001. , 1998, Science.

[38]  H. McSween,et al.  SULFIDE ISOTOPIC COMPOSITIONS IN SHERGOTTITES AND ALH84001, AND POSSIBLE IMPLICATIONS FOR LIFE ON MARS , 1997 .

[39]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[40]  A. Banin,et al.  Surface chemistry and mineralogy , 1992 .

[41]  E. Scott,et al.  Petrological evidence for shock melting of carbonates in the martian meteorite ALH84001 , 1997, Nature.

[42]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[43]  Harry Y. McSween,et al.  A possible high-temperature origin for the carbonates in the martian meteorite ALH84001 , 1996, Nature.

[44]  R. Clayton,et al.  Isotopic Composition of Carbonate in EETA 79001 and its Relation to Parent Body Volatiles , 1988 .

[45]  N. F. Shimp,et al.  A Preliminary Report on Magnesium Carbonate Formation in Glacial Lake Bonneville , 1961, The Journal of Geology.

[46]  L. Anovitz,et al.  Phase Equilibria in the System CaCO3-MgCO3-FeCO3 , 1987 .

[47]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[48]  Carbonates in Martian meteorite ALH84001: A planetary perspective on formation temperature , 1997 .

[49]  F. G. Ferris,et al.  Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water , 1990 .

[50]  V. R. Baker,et al.  Ancient oceans, ice sheets and the hydrological cycle on Mars , 1991, Nature.