OPTIMIZATION OF ANTENNA CONFIGURATION WITH A FITNESS-ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM

In this article, a novel numerical technique, called Fitness Adaptive Difierential Evolution (FiADE) for optimizing certain pre-deflned antenna conflguration to attain best possible radiation characteristics is presented. Difierential Evolution (DE), inspired by the natural phenomenon of theory of evolution of life on earth, employs the similar computational steps as by any other Evolutionary Algorithm (EA). Scale Factor and Crossover Probability are two very important control parameter of DE.This article describes a very competitive yet very simple form of adaptation technique for tuning the scale factor, on the run, without any user intervention. The adaptation strategy is based on the fltness function value of individuals in DE population. The feasibility, e-ciency and efiectiveness of the proposed algorithm in the fleld of electromagnetism are examined over a set of well-known antenna conflgurations optimization problems. Comparison with the some very popular and powerful metaheuristics re∞ects the superiority of this simple parameter automation strategy in terms of accuracy, convergence speed, and robustness.

[1]  Václav Snásel,et al.  Linear antenna array synthesis using fitness-adaptive differential evolution algorithm , 2010, IEEE Congress on Evolutionary Computation.

[2]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  W. Price Global optimization by controlled random search , 1983 .

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[7]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[8]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[9]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[10]  Yahya Rahmat-Samii,et al.  Electromagnetic Optimization by Genetic Algorithms , 1999 .

[11]  M. F. Pantoja,et al.  Benchmark Antenna Problems for Evolutionary Optimization Algorithms , 2007, IEEE Transactions on Antennas and Propagation.

[12]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[13]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[14]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[17]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[18]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[19]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[20]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[21]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[22]  C. Balanis Antenna theory , 1982 .

[23]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[24]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[25]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[26]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[27]  E.J. Rothwell,et al.  Investigation of Simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas , 2004, IEEE Transactions on Antennas and Propagation.

[28]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Caro Lucas,et al.  A novel numerical optimization algorithm inspired from weed colonization , 2006, Ecol. Informatics.

[30]  Walid S. Saba,et al.  ANALYSIS AND DESIGN , 2000 .