Homogenization of granular material modeled by a three-dimensional discrete element method

Abstract A homogenization strategy for granular materials is presented and applied to a three-dimensional discrete element method (DEM), that uses superellipsoids as particles. Macroscopic quantities are derived from the microscopic quantities resulting from a DEM simulation by averaging over representative volume elements (RVEs). The implementation of an RVE is described in detail regarding the definition and discretization of the RVE boundary. The homogenization strategy is validated by DEM simulations of compression and shear tests of cohesionless granular assemblies. Finally, an elasto-plastic material model is fitted to the resulting stress–strain curves.

[1]  John R. Williams,et al.  SUPERQUADRICS AND MODAL DYNAMICS FOR DISCRETE ELEMENTS IN INTERACTIVE DESIGN , 1992 .

[2]  Scott M. Johnson,et al.  Contact resolution algorithm for an ellipsoid approximation for discrete element modeling , 2004 .

[3]  A. Sallam Studies on Modeling Angular Soil Particles Using the Discrete Element Method , 2004 .

[4]  Jopan Sheng,et al.  A packing generation scheme for the granular assemblies with 3D ellipsoidal particles , 1999 .

[5]  P. A. Cundall,et al.  FORMULATION OF A THREE-DIMENSIONAL DISTINCT ELEMENT MODEL - PART I. A SCHEME TO DETECT AND REPRESENT CONTACTS IN A SYSTEM COMPOSED OF MANY POLYHEDRAL BLOCKS , 1988 .

[6]  H. Ramon,et al.  Strategies for contact resolution of level surfaces , 2004 .

[7]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[8]  John M. Ting,et al.  Effect of particle shape on the strength and deformation mechanisms of ellipse‐shaped granular assemblages , 1995 .

[9]  Mohammad Hossein Abbaspour-Fard,et al.  Shape representation of axi‐symmetrical, non‐spherical particles in discrete element simulation using multi‐element model particles , 1999 .

[10]  M. Hossein Abbaspour-Fard,et al.  Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multi-element model particles ulation using multi-element model particles , 2000 .

[11]  P. A. Cundall,et al.  NUMERICAL MODELLING OF DISCONTINUA , 1992 .

[12]  P. A. Cundall,et al.  A DISCONTINUOUS FUTURE FOR NUMERICAL MODELLING IN GEOMECHANICS , 2001 .

[13]  Ekkehard Ramm,et al.  A particle center based homogenization strategy for granular assemblies , 2004 .

[14]  T. Ng,et al.  A three-dimensional discrete element model using arrays of ellipsoids , 1997 .

[15]  Gian Antonio D'Addetta,et al.  Discrete models for cohesive frictional materials , 2004 .

[16]  Jean-Albert Ferrez,et al.  Dynamic triangulations for efficient 3D simulation of granular materials , 2001 .

[17]  John-Paul Latham,et al.  Shape selection menu for grand scale discontinua systems , 2004 .

[18]  Christian Miehe,et al.  A framework for micro–macro transitions in periodic particle aggregates of granular materials , 2004 .

[19]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[20]  Jamshid Ghaboussi,et al.  Three-dimensional discrete element method for granular materials , 1990 .

[21]  J. Bardet,et al.  The asymmetry of stress in granular media , 2001 .

[22]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.