DFT Calculations of the Electron Affinities of Nucleic Acid Bases: Dealing with Negative Electron Affinities

To better understand the cause of the diversity in reported values of the electron affinities (EAs) for DNA bases, we performed a series of DFT (B3LYP functional) calculations at different basis set sizes. Through investigation of (1) trends in the values of EAs, (2) the excess electron spin distribution of the anion radical dependence on basis set size, (3) effect of the excess electron on ZPEs, we are able to identify the features of a basis set that allows for dipole-bound and continuum states to compete with molecular states for the electron. Smaller basis sets that confine the excess electron to the molecule allow for reasonable estimates of relative valence electron affinities excluding dipole-bound states and suggest the order of adiabatic valence electron affinities to be U ≈ T > C ≈ I (hypoxanthine) > A > G with G nearly 1 eV less electron affinic than U. Combining the best estimates from theory and experiment we place the adiabatic valence electron affinities of the pyrimidines as zero to +0.2 e...

[1]  M. Sevilla,et al.  Electron Spin Resonance Study of Electron Transfer in DNA: Inter-Double-Strand Tunneling Processes , 2000 .

[2]  Kenneth D. Jordan,et al.  Temporary anion states of polyatomic hydrocarbons , 1987 .

[3]  Notker Rösch,et al.  Comment on “Concerning the applicability of density functional methods to atomic and molecular negative ions” [J. Chem. Phys. 105, 862 (1996)] , 1997 .

[4]  R. J. Boyd,et al.  Electron affinities and ionization potentials of nucleotide bases , 2000 .

[5]  Nino Russo,et al.  Theoretical determination of electron affinity and ionization potential of DNA and RNA bases , 2000 .

[6]  L. Adamowicz,et al.  Anions of the hydrogen-bonded guanine-cytosine dimer - Theoretical study , 2001 .

[7]  Daniel M. Neumark,et al.  Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters , 1998 .

[8]  Edward S. Chen,et al.  Negative Ion Mass Spectra, Electron Affinities, Gas Phase Acidities, Bond Dissociation Energies, and Negative Ion States of Cytosine and Thymine , 2000 .

[9]  M. Sevilla,et al.  The purine DNA base cation and anion radicals: an e.s.r. study. , 1974, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[10]  J. Perdew,et al.  Calculated electron affinities of the elements , 1982 .

[11]  H. Schaefer,et al.  COMMUNICATIONS Concerning the applicability of density functional methods to atomic and molecular negative ions , 1996 .

[12]  H. Abdoul-Carime,et al.  Electron attachment to isolated nucleic acid bases , 1996 .

[13]  J. H. Hendricks,et al.  Dipole bound, nucleic acid base anions studied via negative ion photoelectron spectroscopy , 1996 .

[14]  C. Desfrançois,et al.  Valence and Dipole Binding of Electrons to Uracil , 1998 .

[15]  M. Sevilla,et al.  Elucidation of primary radiation damage in DNA through application of ab initio molecular orbital theory. , 1995, International journal of radiation biology.

[16]  M. Sevilla,et al.  Protonation of nucleobase anions in gamma-irradiated DNA and model systems. Which DNA base is the ultimate sink for the electron? , 1994, Radiation research.

[17]  M. Sevilla,et al.  The influence of hydration on the absolute yields of primary free radicals in gamma-irradiated DNA at 77 K. II. Individual radical yields. , 1994, Radiation research.

[18]  Zhongli Cai,et al.  Electron Spin Resonance Study of the Temperature Dependence of Electron Transfer in DNA: Competitive Processes of Tunneling, Protonation at Carbon, and Hopping , 2000 .

[19]  J. Lett,et al.  Advances in Radiation Biology , 1976 .

[20]  K. Jordan,et al.  Ab Initio Investigation of the Temporary Anion States of Perfluoroethane , 2000 .

[21]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[22]  M L Leininger,et al.  Electron affinities of the DNA and RNA bases. , 2001, Journal of the American Chemical Society.

[23]  M. Sevilla,et al.  Comment on "Electron Attachment to Uracil.Theoretical ab Initio Study" , 1994 .

[24]  L. Adamowicz,et al.  Dipole-Bound Excess-Electron States of Adenine Tautomers. A Theoretical ab Initio Study , 1995 .

[25]  M. Sevilla,et al.  Ab initio molecular orbital calculations of DNA bases and their radical ions in various protonation states: evidence for proton transfer in GC base pair radical anions , 1992 .

[26]  R. Bartlett,et al.  A theoretical study of the valence‐ and dipole‐bound states of the nitromethane anion , 1996 .

[27]  W. Bernhard Sites of electron trapping in DNA as determined by ESR of one-electron-reduced oligonucleotides , 1989 .

[28]  S. Steenken Electron transfer in DNA? Competition by ultra-fast proton transfer? , 1997, Biological chemistry.

[29]  M. Sevilla,et al.  Ab initio molecular orbital calculations of DNA radical ions. 5. Scaling of calculated electron affinities and ionization potentials to experimental values , 1995 .

[30]  G. Schulz,et al.  Electron Transmission Spectroscopy: Rare Gases , 1972 .

[31]  M. Sevilla,et al.  Investigation of Proton Transfer within DNA Base Pair Anion and Cation Radicals by Density Functional Theory (DFT) , 2001 .

[32]  L. Adamowicz,et al.  Electron attachment to uracil. Theoretical ab initio study , 1993 .

[33]  N. Rösch,et al.  Energetics of excess electron transfer in DNA , 2001 .

[34]  Antoine Moreau,et al.  Cluster size effects upon anion solvation of N-heterocyclic molecules and nucleic acid bases , 2000 .

[35]  G. Gallup,et al.  ELECTRON ATTACHMENT ENERGIES OF THE DNA BASES , 1998 .

[36]  K. Bowen,et al.  The dipole bound-to-covalent anion transformation in uracil , 1998 .

[37]  David Becker,et al.  The chemical consequences of radiation damage to DNA , 1993 .