A smart DNA-gold nanoparticle probe for detecting single-base changes on the platform of a quartz crystal microbalance.

A design of DNA-gold nanoparticle probe-fueled DNA strand displacements for detecting single-base changes on the platform of a quartz crystal microbalance with random sequences was developed. After optimizing and testing the detection system, it has been successfully applied to detect mutation of a realistic sequence associated with human cancer, thereby indicating that this method has potential applicability in general.

[1]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[2]  Sudhakar S. Marla,et al.  SNP identification in unamplified human genomic DNA with gold nanoparticle probes , 2005, Nucleic acids research.

[3]  C. Niemeyer,et al.  DNA‐Based Assembly of Metal Nanoparticles , 2005 .

[4]  A. Misra,et al.  SNP genotyping: technologies and biomedical applications. , 2007, Annual review of biomedical engineering.

[5]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[6]  Colin D. Medley,et al.  Molecular engineering of DNA: molecular beacons. , 2009, Angewandte Chemie.

[7]  Jae-Seung Lee,et al.  Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. , 2011, Analytical chemistry.

[8]  N. McGranahan,et al.  The causes and consequences of genetic heterogeneity in cancer evolution , 2013, Nature.

[9]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[10]  Fred Russell Kramer,et al.  Multicolor molecular beacons for allele discrimination , 1998, Nature Biotechnology.

[11]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[12]  A. Levine,et al.  The p53 tumour suppressor gene , 1991, Nature.

[13]  Sarit S. Agasti,et al.  Gold nanoparticles in chemical and biological sensing. , 2012, Chemical reviews.

[14]  L. Brooks,et al.  A DNA polymorphism discovery resource for research on human genetic variation. , 1998, Genome research.

[15]  I. Willner,et al.  Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold. , 2009, ACS nano.

[16]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[17]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[18]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[19]  Benjamin L Miller,et al.  Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. , 2005, Journal of the American Chemical Society.

[20]  Peng Yin,et al.  Optimizing the specificity of nucleic acid hybridization. , 2012, Nature chemistry.

[21]  Haojun Liang,et al.  An Efficient DNA‐Fueled Molecular Machine for the Discrimination of Single‐Base Changes , 2014, Advanced materials.

[22]  Wei Tang,et al.  Assembly of DNA-functionalized gold nanoparticles on electrospun nanofibers as a fluorescent sensor for nucleic acids. , 2013, Chemical communications.

[23]  Shinzi Ogasawara,et al.  SNP genotyping by using photochemical ligation. , 2006, Angewandte Chemie.

[24]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[25]  Fredrik Höök,et al.  Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates , 2010, Nature Protocols.

[26]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.

[27]  E. Kool,et al.  Nonenzymatic autoligation in direct three-color detection of RNA and DNA point mutations , 2001, Nature Biotechnology.

[28]  Na Li,et al.  A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. , 2012, Chemical communications.

[29]  Rolf Hilfiker,et al.  The use of single-nucleotide polymorphism maps in pharmacogenomics , 2000, Nature Biotechnology.

[30]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[31]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[32]  Yulia V Gerasimova,et al.  Enzyme-assisted target recycling (EATR) for nucleic acid detection. , 2014, Chemical Society reviews.

[33]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[34]  M. Relling,et al.  Pharmacogenomics: translating functional genomics into rational therapeutics. , 1999, Science.

[35]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[36]  Jeremy Heil,et al.  Human diallelic insertion/deletion polymorphisms. , 2002, American journal of human genetics.

[37]  L. Blum,et al.  DNA biosensors and microarrays. , 2008, Chemical reviews.

[38]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[39]  Haojun Liang,et al.  Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. , 2012, Journal of the American Chemical Society.

[40]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[41]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[42]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.