Gravitational waves, dark energy and inflation

In this paper we first present a complete classification of gravitational waves according to their frequencies: (i) Ultra high frequency band (above 1 THz); (ii) Very high frequency band (100 kHz–1 THz); (iii) High frequency band (10 Hz–100 kHz); (iv) Middle frequency band (0.1 Hz–10 Hz); (v) Low frequency band (100 nHz–0.1 Hz); (vi) Very low frequency band (300 pHz–100 nHz); (vii) Ultra low frequency band (10 fHz–300 pHz); (viii) Hubble (extremely low) frequency band (1 aHz–10 fHz); (ix) Infra-Hubble frequency band (below 1 aHz). After briefly discussing the method of detection for different frequency bands, we review the concept and status of space gravitational-wave missions — LISA, ASTROD, ASTROD-GW, Super-ASTROD, DECIGO and Big Bang Observer. We then address to the determination of dark energy equation, and probing the inflationary physics using space gravitational wave detectors.

[1]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[2]  W. Ni Testing Relativistic Gravity and Detecting Gravitational Waves in Space , 2010, 1001.0213.

[3]  C. Lämmerzahl,et al.  ASTROD optimized for Gravitational Wave detection: ASTROD-GW , 2010 .

[4]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[5]  Yang-Hong Zhang,et al.  Relic gravitational waves with a running spectral index and its constraints at high frequencies , 2009, 0910.0325.

[6]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[7]  W. Ni COSMIC POLARIZATION ROTATION, COSMOLOGICAL MODELS, AND THE DETECTABILITY OF PRIMORDIAL GRAVITATIONAL WAVES , 2009, 0903.0756.

[8]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[9]  W. Ni Super-ASTROD: probing primordial gravitational waves and mapping the outer solar system , 2008, 0812.0887.

[10]  A. Vecchio,et al.  Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.

[11]  C. Mishra,et al.  LISA as a dark energy probe , 2008, 0810.5727.

[12]  G. Russo,et al.  First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration , 2007, 0710.3752.

[13]  A. Królak,et al.  All-sky search of NAUTILUS data , 2008, 0809.0273.

[14]  Paolo de Bernardis,et al.  B-Pol: detecting primordial gravitational waves generated during inflation , 2008, 0808.1881.

[15]  Fangyu Li,et al.  Perturbative photon fluxes generated by high-frequency gravitational waves and their physical effects , 2008, 0806.1989.

[16]  E. al.,et al.  The Experimental Probe of Inflationary Cosmology (EPIC): A Mission Concept Study for NASA's Einstein Inflation Probe , 2008, 0805.4207.

[17]  G. F. Marranghello,et al.  The Schenberg spherical gravitational wave detector: the first commissioning runs , 2008 .

[18]  M. Ando,et al.  Current status of the CLIO project , 2008, 0805.2384.

[19]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[20]  Seiji Kawamura,et al.  Search for a stochastic background of 100-MHz gravitational waves with laser interferometers. , 2008, Physical review letters.

[21]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[22]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[23]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[24]  Tristan L. Smith,et al.  Inflationary gravitational-wave background and measurements of the scalar spectral index , 2008, 0802.1530.

[25]  Wei-Tou Ni,et al.  ASTROD and ASTROD I -- Overview and Progress , 2007, 0712.2492.

[26]  Y. Zhang,et al.  2-loop quantum Yang–Mills condensate as dark energy , 2007, 0710.0077.

[27]  L. Gottardi,et al.  Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K , 2007, 0705.0122.

[28]  M. M. Casey,et al.  Upper limits on gravitational wave emission from 78 radio pulsars (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (042001)) , 2007, gr-qc/0702039.

[29]  R. Ingley,et al.  A prototype gravitational wave detector for 100 MHz , 2006 .

[30]  Michael Shao,et al.  Taking the Measure of the Universe: Precision Astrometry with SIM PlanetQuest , 2006, 0708.3953.

[31]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[32]  N. Seto Correlation analysis of stochastic gravitational wave background around 0.1 1 Hz , 2005, gr-qc/0510067.

[33]  Tristan L. Smith,et al.  Direct detection of the inflationary gravitational-wave background , 2005, astro-ph/0506422.

[34]  N. Cornish,et al.  Beyond LISA: Exploring future gravitational wave missions , 2005, gr-qc/0506015.

[35]  W. Ni Empirical Foundations of the Relativistic Gravity , 2005, gr-qc/0504116.

[36]  J. Taylor,et al.  Relativistic binary pulsar B1913+16: Thirty years of observations and analysis , 2004, astro-ph/0407149.

[37]  V. Sahni,et al.  Quintessential inflation on the brane and the relic gravity wave background , 2004, hep-th/0402086.

[38]  Alison J. Farmer,et al.  The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.

[39]  Wei-Tou Ni,et al.  ASTROD–AN OVERVIEW , 2002 .

[40]  W. Ni,et al.  PICO-WATT AND FEMTO-WATT WEAK-LIGHT PHASE LOCKING , 2002 .

[41]  Shy Jow-tsong On the Study of Weak-Light Phase Locking for Laser Astrodynamical Missions , 2002 .

[42]  T. Souradeep,et al.  Relic gravity waves from braneworld inflation , 2001, gr-qc/0105121.

[43]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[44]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[45]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[46]  Mark Birkinshaw,et al.  Quasar Proper Motions and Low-Frequency Gravitational Waves , 1996, astro-ph/9610086.

[47]  Lantz,et al.  Pulsar timing and the upper limits on a gravitational wave background: A Bayesian approach. , 1996, Physical review. D, Particles and fields.

[48]  E. al.,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1996, astro-ph/9609064.

[49]  E. L. Wright,et al.  Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results , 1996, astro-ph/9601067.

[50]  C. Gwinn,et al.  Gravitational radiation and very long baseline interferometry , 1995, astro-ph/9507030.

[51]  J. Stachel History of relativity , 1995 .

[52]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[53]  Johnson,et al.  Orientational dependence of the oscillatory exchange interaction in Co/Cu/Co. , 1992, Physical review letters.

[54]  Hodges,et al.  Cosmic microwave background probes models of inflation. , 1992, Physical review letters.

[55]  K. Kuroda,et al.  Correction to Interferometric Measurements of Absolute Gravity Arising from the Finite Speed of Light , 1991 .

[56]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[57]  Pi,et al.  Quantum mechanics of the scalar field in the new inflationary universe. , 1985, Physical review. D, Particles and fields.

[58]  John L. Hall,et al.  Space antenna for gravitational wave astronomy. , 1985 .

[59]  P. Bender,et al.  A Possible Laser Gravitational Wave Experiment in Space , 1984 .

[60]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[61]  A. Starobinsky,et al.  Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations , 1982 .

[62]  Stephen W. Hawking,et al.  The Development of Irregularities in a Single Bubble Inflationary Universe , 1982 .

[63]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[64]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[65]  B. Hoffmann,et al.  'Subtle Is the Lord ...': The Science and the Life of Albert Einstein , 1984 .

[66]  Viatcheslav Mukhanov,et al.  Quantum Fluctuations and a Nonsingular Universe , 1981 .

[67]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[68]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[69]  W. Press,et al.  Gravitational waves. , 1980, Science.

[70]  A. A. Starobinskii,et al.  Spectrum of Relict Gravitational Radiation and the Early State of the Universe - JETP Lett. 30, 682 (1979) , 1979 .