Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma, Part one: Sunspot dynamics

In this study, the non-linear analysis of the sunspot index is embedded in the non-extensive statistical theory of Tsallis (1988, 2004, 2009) [7,9,10]. The q-triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the sunspot index timeseries. Also the multifractal scaling exponent spectrum f(a), the generalized Renyi dimension spectrum D(q) and the spectrum J(p) of the structure function exponents were estimated experimentally and theoretically by using the q-entropy principle included in Tsallis non-extensive statistical theory, following Arimitsu and Arimitsu (2001, 2000) [76,77]. Our analysis showed clearly the following: (a) a phase transition process in the solar dynamics from high dimensional non-Gaussian SOC state to a low dimensional non-Gaussian chaotic state, (b) strong intermittent solar turbulence and anomalous (multifractal) diffusion solar process, which is strengthened as the solar dynamics makes a phase transition to low dimensional chaos in accordance to Ruzmaikin, Zeleny and Milovanov’s studies (Zelenyi and Milovanov (1991) [21]); Milovanov and Zelenyi (1993) [22]; Ruzmakin et al. (1996) [26]) (c) faithful agreement of Tsallis non-equilibrium statistical theory with the experimental estimations of (i) non-Gaussian probability distribution function P(x), (ii) multifractal scaling exponent spectrum f(a) and generalized Renyi dimension spectrum Dq, (iii) exponent spectrum J(p) of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics.

[1]  J. L. McCauley,et al.  Nonintegrability, chaos, and complexity , 1997, cond-mat/0001198.

[2]  Constantino Tsallis Nonextensive Statistical Mechanics, Anomalous Diffusion and Central Limit Theorems , 2004 .

[3]  Tom Chang,et al.  Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail , 1999 .

[4]  N. Weiss Chaotic behavior in stellar dynamos , 1985 .

[5]  Veltri,et al.  Field-line transport in stochastic magnetic fields: Percolation, Lévy flights, and non-Gaussian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Loukas Vlahos,et al.  Derivation of Solar Flare Cellular Automata Models from a Subset of the Magnetohydrodynamic Equations , 1998 .

[7]  Nonextensive statistics in stellar plasma and solar neutrinos , 1999, nucl-th/9912064.

[8]  A model of diffusion produced by a cellular surface flow , 1997 .

[9]  C. Tsallis Entropic nonextensivity: a possible measure of complexity , 2000, cond-mat/0010150.

[10]  G. Zaslavsky,et al.  Fractional dynamics of coupled oscillators with long-range interaction. , 2005, Chaos.

[11]  L. Zelenyi,et al.  Functional background of the Tsallis entropy: "coarse-grained" systems and "kappa" distribution functions , 2000 .

[12]  Vasily E Tarasov Fractional generalization of Liouville equations. , 2004, Chaos.

[13]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[14]  Lawrence,et al.  Multiplicative cascade models of multifractal solar magnetic fields. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[16]  Michael C. Mackey,et al.  Time's Arrow: The Origins of Thermodynamic Behavior , 1991 .

[17]  A. Ruzmaikin Order and Chaos in the Solar Cycle , 1990 .

[18]  Zanette,et al.  Thermodynamics of anomalous diffusion. , 1995, Physical review letters.

[19]  Ya. B. Zel'Dovich,et al.  Intermittency in random media , 1987 .

[20]  C. Tsallis,et al.  Multivariate Generalizations of the q--Central Limit Theorem , 2007, cond-mat/0703533.

[21]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[22]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[23]  L. Zelenyi,et al.  "Strange" Fermi processes and power-law nonthermal tails from a self-consistent fractional kinetic equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  G. L. Ferri,et al.  Tsallis’ q-triplet and the ozone layer , 2010 .

[25]  T. D. Wit,et al.  Non-Gaussian statistics in space plasma turbulence: fractal properties and pitfalls , 1996, comp-gas/9607003.

[26]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[27]  C. Cadavid,et al.  Spectral Properties of Solar Convection and Diffusion , 1996 .

[28]  Anastasios A Tsonis,et al.  Randomnicity: Rules and Randomness in the Realm of the Infinite , 2008 .

[29]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[30]  E. Marsch Analysis of MHD Turbulence: Spectra of Ideal Invariants, Structure Functions and Intermittency Scalings , 1995 .

[31]  Fractal geometry of quantum spacetime at large scales , 1998, hep-th/9808070.

[32]  C. Schrijver,et al.  Anomalous Diffusion of Magnetic Elements across the Solar Surface , 1993 .

[33]  E. Cohen Statistics and dynamics , 2002 .

[34]  Analysis of velocity fluctuation in turbulence based on generalized statistics , 2001, cond-mat/0110349.

[35]  C. Tsallis,et al.  Nonextensive statistical mechanics , 2005 .

[36]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[37]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[38]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[39]  J. Nicoll,et al.  A closed-form differential renormalization-group generator for critical dynamics , 1978 .

[40]  Xenophon Moussas,et al.  A nonlinear RLC solar cycle model , 1996 .

[41]  C. Meneveau,et al.  The multifractal spectrum of the dissipation field in turbulent flows , 1987 .

[42]  E. Lu,et al.  Avalanches and the Distribution of Solar Flares , 1991 .

[43]  J. Krommes,et al.  Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields , 2001 .

[44]  W. Macek,et al.  On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach , 2005 .

[45]  E. K. Lenzi,et al.  Statistical mechanics based on Renyi entropy , 2000 .

[46]  A. Rigas,et al.  Evidence for strange attractor structures in space plasmas. , 1992 .

[47]  I. Prigogine Time, Structure, and Fluctuations , 1978, Science.

[48]  Alexander Ruzmaikin,et al.  Turbulent and Chaotic Dynamics Underlying Solar Magnetic Variability , 1995 .

[49]  Fausto Cattaneo,et al.  Periodic and aperiodic dynamo waves , 1984 .

[50]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[51]  A. V. Milovanov,et al.  Applications of fractal geometry to dynamical evolution of sunspots , 1993 .

[52]  Alexander Ruzmaikin,et al.  Multifractal measure of the solar magnetic field , 1993 .

[53]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[54]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[55]  Jürgen Kurths,et al.  Can a solar pulsation event be characterized by a low-dimensional chaotic attractor? , 1986 .

[56]  G. P. Pavlos,et al.  Tsallis statistics and magnetospheric self-organization , 2012 .

[57]  T. Arimitsu,et al.  Analysis of turbulence by statistics based on generalized entropies , 2001 .

[58]  G. Zaslavsky Renormalization group theory of anomalous transport in systems with Hamiltonian chaos. , 1994, Chaos.

[59]  ANOMALOUS DIFFUSION MODIFIES SOLAR NEUTRINO FLUXES , 1997, astro-ph/9710173.

[60]  Vasily E. Tarasov,et al.  ELECTROMAGNETIC FIELDS ON FRACTALS , 2006, 0711.1783.

[61]  Milan Paluš,et al.  Sunspot Cycle: A Driven Nonlinear Oscillator? , 1999 .

[62]  F. Takens Detecting strange attractors in turbulence , 1981 .

[63]  Vasily E Tarasov Fractional systems and fractional Bogoliubov hierarchy equations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[65]  Joan Feynman,et al.  Period and phase of the 88-year solar cycle and the Maunder minimum: Evidence for a chaotic sun , 1990 .

[66]  V. Yankov Three rules of nonlinear physics , 1997 .

[67]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[68]  James M. McTiernan,et al.  Solar flares and avalanches in driven dissipative systems , 1993 .

[69]  A. Vulpiani,et al.  Anomalous scaling laws in multifractal objects , 1987 .

[70]  James Theiler,et al.  Using surrogate data to detect nonlinearity in time series , 1991 .

[71]  A. Ruzmaikin,et al.  Anomalous Diffusion of Solar Magnetic Elements , 1999 .

[72]  L de Arcangelis,et al.  Universality in solar flare and earthquake occurrence. , 2006, Physical review letters.

[73]  Emmanuel T. Sarris,et al.  Comments and new results about the magnetospheric chaos hypothesis , 1999 .

[74]  Raoul R. Nigmatullin,et al.  Fractional integral and its physical interpretation , 1992 .

[75]  Vasily E. Tarasov Fractional Liouville and BBGKI Equations , 2005 .

[76]  V. E. Tarasov Fractional variations for dynamical systems: Hamilton and Lagrange approaches , 2006, math-ph/0606048.

[77]  T. Arimitsu,et al.  Tsallis statistics and fully developed turbulence , 2000 .

[78]  G. P. Pavlos,et al.  SVD analysis of the magnetospheric AE index time series and comparison with low-dimensional chaotic dynamics , 2001 .

[79]  D. Kugiumtzis,et al.  Nonlinear analysis of magnetospheric data Part I. Geometric characteristics of the AE index time series and comparison with nonlinear surrogate data , 1999 .

[80]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[81]  Emmanuel T. Sarris,et al.  Geometrical characteristics of magnetospheric energetic ion time series: evidence for low dimensional chaos , 2003 .

[82]  E. Cohen,et al.  Boltzmann and Einstein: Statistics and dynamics — An unsolved problem , 2005 .

[83]  A. Ruzmaikin,et al.  The solar dynamo , 1985 .

[84]  Solar MHD turbulence in regions with various levels of flare activity , 2002 .

[85]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[86]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[87]  E. Mello,et al.  The fluctuation-dissipation theorem in the framework of the Tsallis statistics , 1994 .

[88]  Pierluigi Veltri,et al.  Anomalous diffusion and Lévy random walk of magnetic field lines in three dimensional turbulence , 1995 .

[89]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[90]  E. Marsch,et al.  Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind , 1997 .

[91]  Christian Beck,et al.  From the Perron-Frobenius equation to the Fokker-Planck equation , 1995 .

[92]  Renio S. Mendes,et al.  Renormalization group approach to nonextensive statistical mechanics , 2001 .

[93]  Christophe Letellier,et al.  Relation between observability and differential embeddings for nonlinear dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Vasily E. Tarasov,et al.  Dynamics with low-level fractionality , 2005, physics/0511138.

[95]  G. P. Pavlos,et al.  First and second order non-equilibrium phase transition and evidence for non-extensive Tsallis statistics in Earth’s magnetosphere , 2011 .

[96]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[97]  V. E. Tarasov Continuous Medium Model for Fractal Media , 2005, cond-mat/0506137.

[98]  L. Zelenyi,et al.  Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics , 2004 .

[99]  G. Consolini,et al.  Multifractal structure of auroral electrojet index data. , 1996, Physical review letters.

[100]  Zanette,et al.  Fractal random walks from a variational formalism for Tsallis entropies. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[101]  G. P. Pavlos,et al.  Evidence for Coexistence of SOC, Intermittent Turbulence and Low‐Dimensional Chaos Processes in Solar Flare Dynamics , 2011 .

[102]  J. Krommes SYSTEMATIC STATISTICAL THEORIES OF PLASMA TURBULENCE AND INTERMITTENCY : CURRENT STATUS AND FUTURE PROSPECTS , 1997 .