Plasmonic Structures, Materials and Lenses for Optical Lithography beyond the Diffraction Limit: A Review

The rapid development of nanotechnologies and sciences has led to the great demand for novel lithography methods allowing large area, low cost and high resolution nano fabrications. Characterized by unique sub-diffraction optical features like propagation with an ultra-short wavelength and great field enhancement in subwavelength regions, surface plasmon polaritons (SPPs), including surface plasmon waves, bulk plasmon polaritons (BPPs) and localized surface plasmons (LSPs), have become potentially promising candidates for nano lithography. In this paper, investigations into plasmonic lithography in the manner of point-to-point writing, interference and imaging were reviewed in detail. Theoretical simulations and experiments have demonstrated plasmonic lithography resolution far beyond the conventional diffraction limit, even with ultraviolet light sources and single exposure performances. Half-pitch resolution as high as 22 nm (~1/17 light wavelength) was observed in plasmonic lens imaging lithography. Moreover, not only the overview of state-of-the-art results, but also the physics behind them and future research suggestions are discussed as well.

[1]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[2]  J. J. Burke,et al.  Surface-polaritonlike waves guided by thin, lossy metal films. , 1983, Optics letters.

[3]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[4]  R. Blaikie,et al.  Sub-diffraction-limited patterning using evanescent near-field optical lithography , 1999 .

[5]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[6]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[7]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[8]  J. Goodberlet,et al.  Patterning Sub-50 nm features with near-field embedded-amplitude masks , 2002 .

[9]  S. Chou,et al.  Ultrafast and direct imprint of nanostructures in silicon , 2002, Nature.

[10]  N. Fang,et al.  Near-field two-photon nanolithography using an apertureless optical probe , 2002 .

[11]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[12]  T. Chong,et al.  Laser assisted surface nanopatterning , 2003 .

[13]  C. Mirkin,et al.  Fabrication of sub-50-nm solid-state nanostructures on the basis of dip-pen nanolithography , 2003 .

[14]  Xiangang Luo,et al.  Sub 100 nm lithography based on plasmon polariton resonance , 2003, Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology Conference.

[15]  Hanmin Yao,et al.  Patterning sub 100 nm isolated patterns with 436 nm lithography , 2003 .

[16]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[17]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[18]  N. Fang,et al.  Sub-100 nm lithography using ultrashort wavelength of surface plasmons , 2004 .

[19]  N. Fang,et al.  Plasmonic Nanolithography , 2004 .

[20]  Xiangang Luo,et al.  Subwavelength photolithography based on surface-plasmon polariton resonance. , 2004, Optics express.

[21]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[22]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[23]  Zhaowei Liu,et al.  Focusing surface plasmons with a plasmonic lens. , 2005, Nano letters.

[24]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[25]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[26]  D. Shao,et al.  Surface-plasmon-assisted nanoscale photolithography by polarized light , 2005 .

[27]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[28]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[29]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[30]  M. Wegener,et al.  Low-loss negative-index metamaterial at telecommunication wavelengths. , 2006, Optics letters.

[31]  Toshiki Ito,et al.  Fabrication of half-pitch 32nm resist patterns using near-field lithography with a-Si mask , 2006 .

[32]  Xiaowei Guo,et al.  Large-area surface-plasmon polariton interference lithography. , 2006, Optics letters.

[33]  Sreemanth M. V. Uppuluri,et al.  Nanolithography using high transmission nanoscale bowtie apertures. , 2006, Nano letters.

[34]  R. Blaikie,et al.  Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. , 2007, Optics express.

[35]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[36]  C. Mirkin,et al.  Applications of dip-pen nanolithography. , 2007, Nature nanotechnology.

[37]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[38]  A. Heltzel,et al.  Surface plasmon-based nanopatterning assisted by gold nanospheres , 2008, Nanotechnology.

[39]  Changtao Wang,et al.  Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films. , 2008, Optics express.

[40]  Zhaowei Liu,et al.  Ray optics at a deep-subwavelength scale: a transformation optics approach. , 2008, Nano letters.

[41]  Changtao Wang,et al.  Sub-diffraction-limited interference photolithography with metamaterials. , 2008, Optics express.

[42]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[43]  Y. Wang,et al.  Flying plasmonic lens in the near field for high-speed nanolithography. , 2008, Nature nanotechnology.

[44]  Kwangchil Lee,et al.  Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption. , 2008, Optics express.

[45]  E. Bezus,et al.  Diffraction gratings for generating varying-period interference patterns of surface plasmons , 2008 .

[46]  Zhaowei Liu,et al.  Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers , 2008 .

[47]  Y. Wang,et al.  Plasmonic nearfield scanning probe with high transmission. , 2008, Nano letters.

[48]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[49]  Mengqiang Wu,et al.  Structural and functional analysis of nanopillar spin electronic devices fabricated by 3D focused ion beam lithography , 2008, Nanotechnology.

[50]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.

[51]  Yongwoo Kim,et al.  Plasmonic nano lithography with a high scan speed contact probe. , 2009, Optics express.

[52]  Changtao Wang,et al.  Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns , 2009 .

[53]  M. Schvartzman,et al.  Robust pattern transfer of nanoimprinted features for sub-5-nm fabrication. , 2009, Nano letters.

[54]  S. Nam,et al.  Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography , 2009 .

[55]  S. Thongrattanasiri,et al.  Hypergratings: nanophotonics in planar anisotropic metamaterials. , 2008, Optics letters.

[56]  Zhaowei Liu,et al.  Broad band two-dimensional manipulation of surface plasmons. , 2009, Nano letters.

[57]  Weibin Chen,et al.  Miniature circular polarization analyzer with spiral plasmonic lens. , 2009, Optics letters.

[58]  Changtao Wang,et al.  Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer. , 2009, Optics express.

[59]  Thomas Glinsner,et al.  Next-generation lithography: Making a good impression , 2010 .

[60]  C. Wagner,et al.  EUV lithography: Lithography gets extreme , 2010 .

[61]  K. V. Sreekanth,et al.  Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Weiqiang Chen,et al.  Ultrathin, ultrasmooth and low-loss silver films via wetting and annealing , 2010 .

[63]  Louise R. Giam,et al.  Beam pen lithography. , 2010, Nature nanotechnology.

[64]  R. Williams,et al.  A smooth optical superlens , 2010 .

[65]  K. Berggren,et al.  A path to ultranarrow patterns using self-assembled lithography. , 2010, Nano letters.

[66]  R. Bachelot,et al.  Quantitative analysis of localized surface plasmons based on molecular probing. , 2010, ACS nano.

[67]  Joel K. W. Yang,et al.  Sub-10-nm half-pitch electron-beam lithography by using poly(methyl methacrylate) as a negative resist , 2010 .

[68]  Zhaowei Liu,et al.  Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. , 2010, Nature communications.

[69]  Zhaowei Liu,et al.  A super resolution metalens with phase compensation mechanism , 2010 .

[70]  Weibin Chen,et al.  Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. , 2010, Nano letters.

[71]  A. Knoll,et al.  Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes , 2010, Science.

[72]  Changtao Wang,et al.  Subwavelength focusing of light in the planar anisotropic metamaterials with zone plates. , 2010, Optics express.

[73]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[74]  W. Ge,et al.  Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity. , 2011, Optics express.

[75]  D. Bogy,et al.  Maskless Plasmonic Lithography at 22 nm Resolution , 2011, Scientific reports.

[76]  Thomas K. Gaylord,et al.  Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures , 2011, Micromachines.

[77]  Changtao Wang,et al.  Improving resolution of superlens lithography by phase-shifting mask. , 2011, Optics express.

[78]  A. Ishimaru,et al.  Image enhancement for flat and rough film plasmon superlenses by adding loss , 2011 .

[79]  G. Si,et al.  Annular aperture array based color filter , 2011 .

[80]  P. Nordlander,et al.  Plasmonic focusing in symmetry broken nanocorrals. , 2011, Nano letters.

[81]  A. Ishimaru,et al.  Optical transmission through a plasmon film lens with small roughness: enhanced spatial resolution of images of single source and multiple sources , 2011 .

[82]  O. Ersoy,et al.  Improving near-field confinement of a bowtie aperture using surface plasmon polaritons , 2011 .

[83]  L. Tsang,et al.  Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface. , 2012, Optics letters.

[84]  Mingsheng Zhang,et al.  High Contrast Superlens Lithography Engineered by Loss Reduction , 2012 .

[85]  S. L. Teo,et al.  High aspect subdiffraction-limit photolithography via a silver superlens. , 2012, Nano letters.

[86]  L. Guo,et al.  SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography. , 2012, Optics express.

[87]  Young Pil Park,et al.  High-speed plasmonic nanolithography with a solid immersion lens-based plasmonic optical head , 2012 .

[88]  Yongwoo Kim,et al.  Resolution Limit in Plasmonic Lithography for Practical Applications beyond 2x‐nm Half Pitch , 2012, Advanced materials.

[89]  Weibin Chen,et al.  Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. , 2012, Optics letters.

[90]  Changtao Wang,et al.  Deep sub-wavelength imaging lithography by a reflective plasmonic slab. , 2013, Optics express.

[91]  Ting Xu,et al.  All-angle negative refraction and active flat lensing of ultraviolet light , 2013, Nature.

[92]  Wei Zhang,et al.  Negative and Positive Impact of Roughness and Loss on Subwavelength Imaging for Superlens Structures , 2014, Plasmonics.

[93]  Chinhua Wang,et al.  Superlens imaging with a surface plasmon polariton cavity in imaging space. , 2013, Optics letters.

[94]  Changtao Wang,et al.  Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films , 2013 .

[95]  Changtao Wang,et al.  Design and Theoretical Analyses of Tip–Insulator–Metal Structure with Bottom–Up Light Illumination: Formations of Elongated Symmetrical Plasmonic Hot Spot at Sub-10 nm Resolution , 2013, Plasmonics.

[96]  F. Liu,et al.  Two-surface-plasmon-polariton-absorption based nanolithography , 2013 .

[97]  R. Blaikie,et al.  A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures. , 2013, Optics express.

[98]  J. Fischer,et al.  Three‐dimensional optical laser lithography beyond the diffraction limit , 2013 .

[99]  Prashant Shekhar,et al.  Hyperbolic metamaterials: fundamentals and applications , 2014, Nano Convergence.

[100]  Changtao Wang,et al.  Elongating the Air Working Distance of Near-Field Plasmonic Lens by Surface Plasmon Illumination , 2015, Plasmonics.

[101]  X. Wen,et al.  Optical nanolithography with λ/15 resolution using bowtie aperture array , 2014 .

[102]  Wei Zhang,et al.  Improving Imaging Contrast of Non-Contacted Plasmonic Lens by Off-Axis Illumination with High Numerical Aperture , 2014, Plasmonics.

[103]  Wei Zhang,et al.  Off Axis Illumination Planar Hyperlens for Non-contacted Deep Subwavelength Demagnifying Lithography , 2014, Plasmonics.

[104]  Yongtian Wang,et al.  Pushing the resolution of photolithography down to 15nm by surface plasmon interference , 2014, Scientific Reports.

[105]  E. Riedo,et al.  Advanced scanning probe lithography. , 2014, Nature nanotechnology.

[106]  F. Liu,et al.  Two-surface-plasmon-polariton-absorption based lithography using 400 nm femtosecond laser , 2014 .

[107]  Xing Zhu,et al.  Plasmonic Focusing in Nanostructures , 2014, Plasmonics.

[108]  Ping Gao,et al.  Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films , 2014 .

[109]  Changtao Wang,et al.  Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography , 2015 .

[110]  Changtao Wang,et al.  Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination , 2015, Scientific Reports.

[111]  Wei Zhang,et al.  Forming Sub-32-nm High-Aspect Plasmonic Spot via Bowtie Aperture Combined with Metal-Insulator-Metal Scheme , 2015, Plasmonics.

[112]  Changtao Wang,et al.  Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. , 2015, Nanoscale.

[113]  Changtao Wang,et al.  Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens , 2015 .

[114]  Changtao Wang,et al.  Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. , 2016, Nanoscale.

[115]  Xi Chen,et al.  Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode. , 2016, ACS nano.