In vivo real-time dynamics of ATP and ROS production in axonal mitochondria show decoupling in mouse models of peripheral neuropathies

[1]  O. Poirot,et al.  Altered interplay between endoplasmic reticulum and mitochondria in Charcot–Marie–Tooth type 2A neuropathy , 2019, Proceedings of the National Academy of Sciences.

[2]  H. Rigneault,et al.  Label‐free non‐linear microscopy to measure myelin outcome in a rodent model of Charcot‐Marie‐Tooth diseases , 2018, Journal of biophotonics.

[3]  G. Yellen Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism , 2018, The Journal of cell biology.

[4]  D. Mahad,et al.  Mitochondrial dysfunction and axon degeneration in progressive multiple sclerosis , 2018, FEBS letters.

[5]  G. Gallo,et al.  The role of mitochondria in axon development and regeneration , 2018, Developmental neurobiology.

[6]  M. Waxham,et al.  Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography , 2018, bioRxiv.

[7]  V. Yong,et al.  Mechanisms of lysophosphatidylcholine‐induced demyelination: A primary lipid disrupting myelinopathy , 2018, Glia.

[8]  H. Park,et al.  Wallerian demyelination: chronicle of a cellular cataclysm , 2017, Cellular and Molecular Life Sciences.

[9]  Hong Wang,et al.  Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. , 2017, Canadian journal of physiology and pharmacology.

[10]  Mark Ellisman,et al.  Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling , 2016, The Journal of cell biology.

[11]  F. Sedel,et al.  Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis , 2016, Neuropharmacology.

[12]  J. Salzer,et al.  Myelination , 2016, Current Biology.

[13]  H. Rigneault,et al.  Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope. , 2016, Journal of visualized experiments : JoVE.

[14]  Z. Sheng,et al.  Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits , 2016, The Journal of cell biology.

[15]  Jason N Bazil,et al.  Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation. , 2016, Biophysical journal.

[16]  M. Iino,et al.  Neuronal Regulation of Schwann Cell Mitochondrial Ca(2+) Signaling during Myelination. , 2015, Cell reports.

[17]  G. Lenaers,et al.  In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath. , 2015, Mitochondrion.

[18]  L. Tomanek Proteomic responses to environmentally induced oxidative stress , 2015, The Journal of Experimental Biology.

[19]  F. Paul,et al.  Oxidative damage to mitochondria at the nodes of Ranvier precedes axon degeneration in ex vivo transected axons , 2014, Experimental Neurology.

[20]  Q. Nie,et al.  Mitofusin 2 deficiency leads to oxidative stress that contributes to insulin resistance in rat skeletal muscle cells , 2014, Molecular Biology Reports.

[21]  Haohua Tu,et al.  Coherent anti‐Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation , 2014, Journal of biophotonics.

[22]  M. Duchen,et al.  Impulse Conduction Increases Mitochondrial Transport in Adult Mammalian Peripheral Nerves In Vivo , 2013, PLoS biology.

[23]  Olivier Poirot,et al.  Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions , 2013, Front. Cell. Neurosci..

[24]  Wei Ren,et al.  Genetically Encoded Fluorescent Redox Probes , 2013, Sensors.

[25]  John H. Zhang,et al.  The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance , 2013, Medical gas research.

[26]  J. Nerbonne,et al.  Mitofusin 2-Containing Mitochondrial-Reticular Microdomains Direct Rapid Cardiomyocyte Bioenergetic Responses Via Interorganelle Ca2+ Crosstalk , 2012, Circulation research.

[27]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[28]  G. Rutter,et al.  Regulation of ATP production by mitochondrial Ca2+ , 2012, Cell calcium.

[29]  Jens Frahm,et al.  Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity , 2012, Nature.

[30]  H. Osiewacz,et al.  Reactive oxygen species target specific tryptophan site in the mitochondrial ATP synthase. , 2012, Biochimica et biophysica acta.

[31]  J. Svaren,et al.  The Nucleosome Remodeling and Deacetylase Chromatin Remodeling (NuRD) Complex Is Required for Peripheral Nerve Myelination , 2012, The Journal of Neuroscience.

[32]  N. Chandel,et al.  Seeing the light: probing ROS in vivo using redox GFP. , 2011, Cell metabolism.

[33]  A. Teleman,et al.  In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. , 2011, Cell metabolism.

[34]  M. Ushio-Fukai,et al.  Superoxide dismutases: role in redox signaling, vascular function, and diseases. , 2011, Antioxidants & redox signaling.

[35]  R. Vallée,et al.  In vivo evaluation of demyelination and remyelination in a nerve crush injury model , 2011, Biomedical optics express.

[36]  S. Hell,et al.  Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient , 2011, Proceedings of the National Academy of Sciences.

[37]  Nobuhiko Ohno,et al.  Myelination and Axonal Electrical Activity Modulate the Distribution and Motility of Mitochondria at CNS Nodes of Ranvier , 2011, The Journal of Neuroscience.

[38]  R. Hamanaka,et al.  Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. , 2010, Trends in biochemical sciences.

[39]  Yuri Zilberter,et al.  Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis. , 2010, Trends in pharmacological sciences.

[40]  B. Trapp,et al.  Demyelination Increases Axonal Stationary Mitochondrial Size and the Speed of Axonal Mitochondrial Transport , 2010, The Journal of Neuroscience.

[41]  O. Poirot,et al.  Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A. , 2010, Brain : a journal of neurology.

[42]  J. Milbrandt,et al.  Mitofusin 2 Is Necessary for Transport of Axonal Mitochondria and Interacts with the Miro/Milton Complex , 2010, The Journal of Neuroscience.

[43]  H. Kawasaki,et al.  Post-translational modifications of superoxide dismutase. , 2010, Biochimica et biophysica acta.

[44]  O. Demin,et al.  Modeling of ATP–ADP steady‐state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria , 2009, The FEBS journal.

[45]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[46]  J. Geurts,et al.  Enhanced number and activity of mitochondria in multiple sclerosis lesions , 2009, The Journal of pathology.

[47]  Takeharu Nagai,et al.  Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators , 2009, Proceedings of the National Academy of Sciences.

[48]  M. Gutscher,et al.  Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases*♦ , 2009, The Journal of Biological Chemistry.

[49]  D. Bourdette,et al.  Axonal degeneration in multiple sclerosis: The mitochondrial hypothesis , 2009, Current neurology and neuroscience reports.

[50]  P. Hanson,et al.  Edinburgh Research Explorer Mitochondrial Changes within Axons in Multiple Sclerosis Mitochondrial Changes within Axons in Multiple Sclerosis , 2022 .

[51]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[52]  I. Griffiths,et al.  Distribution of mitochondria along small‐diameter myelinated central nervous system axons , 2008, Journal of neuroscience research.

[53]  R. Rudick,et al.  Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions , 2008, Annals of neurology.

[54]  L. Scorrano,et al.  Mitofusin 2: a mitochondria-shaping protein with signaling roles beyond fusion. , 2008, Antioxidants & redox signaling.

[55]  P. Pelicci,et al.  Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? , 2007, Nature Reviews Molecular Cell Biology.

[56]  Jeff W Lichtman,et al.  Imaging axonal transport of mitochondria in vivo , 2007, Nature Methods.

[57]  T. B. Huff,et al.  In vivo coherent anti‐Stokes Raman scattering imaging of sciatic nerve tissue , 2007, Journal of microscopy.

[58]  A. Pestronk,et al.  Altered Axonal Mitochondrial Transport in the Pathogenesis of Charcot-Marie-Tooth Disease from Mitofusin 2 Mutations , 2007, The Journal of Neuroscience.

[59]  E. Frohman,et al.  Multiple sclerosis--the plaque and its pathogenesis. , 2006, The New England journal of medicine.

[60]  Y. Yoon,et al.  Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Chan,et al.  Emerging functions of mammalian mitochondrial fusion and fission. , 2005, Human molecular genetics.

[62]  S. Minucci,et al.  Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis , 2005, Cell.

[63]  M. Palacín,et al.  The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. , 2005, Human molecular genetics.

[64]  G. Hajnóczky,et al.  Control of mitochondrial motility and distribution by the calcium signal , 2004, The Journal of cell biology.

[65]  R. Tsien,et al.  Imaging Dynamic Redox Changes in Mammalian Cells with Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[66]  M. Pericak-Vance,et al.  Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A , 2004, Nature Genetics.

[67]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[68]  Daniel Offen,et al.  The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy , 2004, Journal of Neurology.

[69]  B. Miroux,et al.  The biology of mitochondrial uncoupling proteins. , 2004, Diabetes.

[70]  W. Dauer,et al.  Parkinson's Disease Mechanisms and Models , 2003, Neuron.

[71]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[72]  O. Pedersen,et al.  Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes , 2001, Diabetologia.

[73]  Adelbert Ames,et al.  CNS energy metabolism as related to function , 2000, Brain Research Reviews.

[74]  K. Davies,et al.  Mitochondrial free radical generation, oxidative stress, and aging. , 2000, Free radical biology & medicine.

[75]  G. Allt,et al.  Lysophosphatidyl choline-induced demyelination , 1988, Acta Neuropathologica.

[76]  D. Wilson,et al.  Dependence of mitochondrial oxidative phosphorylation on activity of the adenine nucleotide translocase. , 1983, The Journal of biological chemistry.

[77]  G. Webster,et al.  THE DIFFERENTIATION OF PHOSPHOLIPASE A1 AND A2 IN RAT AND HUMAN NERVOUS TISSUES , 1970, Journal of neurochemistry.

[78]  C. Little,et al.  Properties and regulation of glutathione peroxidase. , 1970, The Journal of biological chemistry.

[79]  M. Stefanini,et al.  Fixation of Ejaculated Spermatozoa for Electron Microscopy , 1967, Nature.

[80]  S. Boncompagni,et al.  Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. , 2015, Cell calcium.

[81]  Mark H Ellisman,et al.  Mitochondrial configurations in peripheral nerve suggest differential ATP production. , 2011, Journal of structural biology.

[82]  F. Palau,et al.  The role of mitochondrial network dynamics in the pathogenesis of Charcot-Marie-Tooth disease. , 2009, Advances in experimental medicine and biology.

[83]  H. Meiri,et al.  Detection of sodium channel distribution in rat sciatic nerve following lysophosphatidylcholine-induced demyelination , 2005, The Journal of Membrane Biology.