Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia

[1]  Thomas P. Howard,et al.  SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2 , 2015, Nature Medicine.

[2]  Philippe Kastner,et al.  Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2 , 2015, Nature Communications.

[3]  S. Armstrong,et al.  Inactivation of Eed impedes MLL-AF9-mediated leukemogenesis through Cdkn2a-dependent and Cdkn2a-independent mechanisms in a murine model. , 2015, Experimental hematology.

[4]  S. Armstrong,et al.  Loss of BAP1 function leads to EZH2-dependent transformation , 2015, Nature Medicine.

[5]  T. Golub,et al.  The Genomic Landscape of Juvenile Myelomonocytic Leukemia , 2015, Nature Genetics.

[6]  M. Loh,et al.  Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. , 2015, Blood.

[7]  G. Stark,et al.  STAT3-driven transcription depends upon the dimethylation of K49 by EZH2 , 2015, Proceedings of the National Academy of Sciences.

[8]  B. Garcia,et al.  Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. , 2014, Blood.

[9]  S. Aerts,et al.  JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. , 2014, Blood.

[10]  Eric Legius,et al.  PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies , 2014, Nature.

[11]  Kristian Helin,et al.  Chromatin repressive complexes in stem cells, development, and cancer. , 2014, Cell stem cell.

[12]  Eric Nestler,et al.  ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases , 2014, BMC Genomics.

[13]  C. Mullighan,et al.  Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential , 2014, The Journal of experimental medicine.

[14]  R. Margueron,et al.  The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. , 2014, Molecular cell.

[15]  S. Orkin,et al.  Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. , 2014, Cell stem cell.

[16]  N. Zeleznik-Le,et al.  Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. , 2014, The Journal of clinical investigation.

[17]  M. Calaminici,et al.  Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma , 2013, Nature Genetics.

[18]  L. Ferrarini,et al.  Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. , 2013, The Journal of clinical investigation.

[19]  H. Aburatani,et al.  Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders , 2013, The Journal of experimental medicine.

[20]  W. Chung,et al.  Genetic loss of SH2B3 in acute lymphoblastic leukemia. , 2013, Blood.

[21]  S. Miyano,et al.  The landscape of somatic mutations in Down syndrome–related myeloid disorders , 2013, Nature Genetics.

[22]  A. Hoischen,et al.  Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome. , 2013, Blood.

[23]  A. Ferrando,et al.  Early T-cell precursor acute lymphoblastic leukaemia , 2013, Current opinion in hematology.

[24]  I. Macaulay,et al.  FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors , 2013, Cell reports.

[25]  D. Nam,et al.  Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. , 2013, Cancer cell.

[26]  E. Nestler,et al.  diffReps: Detecting Differential Chromatin Modification Sites from ChIP-seq Data with Biological Replicates , 2013, PloS one.

[27]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[28]  O. Elemento,et al.  EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. , 2013, Cancer cell.

[29]  S. Orkin,et al.  Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation , 2013, eLife.

[30]  Tim J. Wigle,et al.  Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2 , 2013, Proceedings of the National Academy of Sciences.

[31]  S. Armstrong,et al.  Cell of origin determines clinically relevant subtypes of MLL-rearranged AML , 2013, Leukemia.

[32]  M. J. Ruiz,et al.  FACS analysis of Stat3/5 signaling reveals sensitivity to G-CSF and IL-6 as a significant prognostic factor in pediatric AML: a Children's Oncology Group report. , 2013, Blood.

[33]  S. Lowe,et al.  The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia , 2013, Oncogene.

[34]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[35]  Patrick J. Paddison,et al.  G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. , 2012, Genes & development.

[36]  S. González,et al.  Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. , 2012, Cell stem cell.

[37]  Tim J. Wigle,et al.  A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. , 2012, Nature chemical biology.

[38]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[39]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[40]  S. Sugano,et al.  Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. , 2012, Blood.

[41]  P. Yue,et al.  Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts , 2012, Proceedings of the National Academy of Sciences.

[42]  A. Kohlmann,et al.  EZH2 mutations and their association with PICALM‐MLLT10 positive acute leukaemia , 2012, British journal of haematology.

[43]  B. Williams,et al.  Dynamic Transformations of Genome-wide Epigenetic Marking and Transcriptional Control Establish T Cell Identity , 2012, Cell.

[44]  G. Boucher,et al.  A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. , 2012, Genes & development.

[45]  S. Armstrong,et al.  Polycomb repressive complex 2 is required for MLL-AF9 leukemia , 2012, Proceedings of the National Academy of Sciences.

[46]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[47]  A. Iwama,et al.  Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes , 2011, The Journal of experimental medicine.

[48]  P. Guglielmelli,et al.  EZH2 mutational status predicts poor survival in myelofibrosis. , 2011, Blood.

[49]  Angelo J. Canty,et al.  Stem cell gene expression programs influence clinical outcome in human leukemia , 2011, Nature Medicine.

[50]  Lars Bullinger,et al.  MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. , 2011, Cancer cell.

[51]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[52]  R. Copeland,et al.  Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas , 2010, Proceedings of the National Academy of Sciences.

[53]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[54]  H. Drexler,et al.  Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders , 2010, Nature Genetics.

[55]  R. Kuiper,et al.  Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes , 2010, Nature Genetics.

[56]  Yan Liu,et al.  Inhibition of STAT3 Signaling Blocks the Anti-apoptotic Activity of IL-6 in Human Liver Cancer Cells* , 2010, The Journal of Biological Chemistry.

[57]  Cheng Cheng,et al.  Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. , 2009, The Lancet. Oncology.

[58]  Bas J. Wouters,et al.  Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling , 2009, Haematologica.

[59]  D. Reinberg,et al.  Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. , 2008, Molecular cell.

[60]  Guo-Cheng Yuan,et al.  EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. , 2008, Molecular cell.

[61]  A. Bhandoola,et al.  The earliest thymic progenitors for T cells possess myeloid lineage potential , 2008, Nature.

[62]  T. Ikawa,et al.  Adult T-cell progenitors retain myeloid potential , 2008, Nature.

[63]  Steven B. Bradfute,et al.  Hematopoietic fingerprints: an expression database of stem cells and their progeny. , 2007, Cell stem cell.

[64]  Kristian Helin,et al.  The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation , 2007, Molecular and Cellular Biology.

[65]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[66]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Jove,et al.  Stat3 regulates genes common to both wound healing and cancer , 2005, Oncogene.

[68]  Christoph Wülfing,et al.  Polycomb Group Protein Ezh2 Controls Actin Polymerization and Cell Signaling , 2005, Cell.

[69]  Thomas M. Schmitt,et al.  Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro , 2004, Nature Immunology.

[70]  Thomas M. Schmitt,et al.  Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. , 2002, Immunity.

[71]  S. Dhanasekaran,et al.  The polycomb group protein EZH2 is involved in progression of prostate cancer , 2002, Nature.

[72]  D. Livingston,et al.  Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. , 2001, Molecular cell.

[73]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[74]  Shankar Srinivas,et al.  Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus , 2001, BMC Developmental Biology.

[75]  D. Link,et al.  STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. , 2001, Immunity.

[76]  T. Hirano,et al.  Involvement of STAT3 in the Granulocyte Colony-stimulating Factor-induced Differentiation of Myeloid Cells* , 1997, The Journal of Biological Chemistry.

[77]  R. Naviaux,et al.  The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses , 1996, Journal of virology.

[78]  L. Chin,et al.  Role of the INK4a Locus in Tumor Suppression and Cell Mortality , 1996, Cell.